scholarly journals Evolution and global transmission of a multidrug-resistant, community-associated MRSA lineage from the Indian subcontinent

2017 ◽  
Author(s):  
Eike J. Steinig ◽  
Sebastian Duchene ◽  
D. Ashley Robinson ◽  
Stefan Monecke ◽  
Maho Yokoyama ◽  
...  

AbstractThe evolution and global transmission of antimicrobial resistance has been well documented in Gram-negative bacteria and healthcare-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. Here, we trace the recent origins and global spread of a multidrug resistant, community-associatedStaphylococcus aureuslineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology of the lineage. Our data shows that the clone emerged on the Indian subcontinent in the early 1970s and disseminated rapidly in the 1990s. Short-term outbreaks in community and healthcare settings occurred following intercontinental transmission, typically associated with travel and family contacts on the subcontinent, but ongoing endemic transmission was uncommon. Acquisition of a multidrug resistance integrated plasmid was instrumental in the divergence of a single dominant and globally disseminated clade in the early 1990s. Phenotypic data on biofilm, growth and toxicity point to antimicrobial resistance as the driving force in the evolution of ST772. The Bengal Bay clone therefore combines the multidrug resistance of traditional healthcare-associated clones with the epidemiological transmission of community-associated MRSA. Our study demonstrates the importance of whole genome sequencing for tracking the evolution of emerging and resistant pathogens. It provides a critical framework for ongoing surveillance of the clone on the Indian subcontinent and elsewhere.ImportanceThe Bengal Bay clone (ST772) is a community-acquired and multidrug-resistantStaphylococcus aureuslineage first isolated from Bangladesh and India in 2004. In this study, we show that the Bengal Bay clone emerged from a virulent progenitor circulating on the Indian subcontinent. Its subsequent global transmission was associated with travel or family contact in the region. ST772 progressively acquired specific resistance elements at limited cost to its fitness and continues to be exported globally resulting in small-scale community and healthcare outbreaks. The Bengal Bay clone therefore combines the virulence potential and epidemiology of community-associated clones with the multidrug-resistance of healthcare-associatedS. aureuslineages. This study demonstrates the importance of whole genome sequencing for the surveillance of highly antibiotic resistant pathogens, which may emerge in the community setting of regions with poor antibiotic stewardship and rapidly spread into hospitals and communities across the world.

mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Eike J. Steinig ◽  
Sebastian Duchene ◽  
D. Ashley Robinson ◽  
Stefan Monecke ◽  
Maho Yokoyama ◽  
...  

ABSTRACT The evolution and global transmission of antimicrobial resistance have been well documented for Gram-negative bacteria and health care-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. In this study, we traced the recent origins and global spread of a multidrug-resistant, community-associated Staphylococcus aureus lineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole-genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology of the lineage. Our data show that the clone emerged on the Indian subcontinent in the early 1960s and disseminated rapidly in the 1990s. Short-term outbreaks in community and health care settings occurred following intercontinental transmission, typically associated with travel and family contacts on the subcontinent, but ongoing endemic transmission was uncommon. Acquisition of a multidrug resistance integrated plasmid was instrumental in the emergence of a single dominant and globally disseminated clade in the early 1990s. Phenotypic data on biofilm, growth, and toxicity point to antimicrobial resistance as the driving force in the evolution of ST772. The Bengal Bay clone therefore combines the multidrug resistance of traditional health care-associated clones with the epidemiological transmission of community-associated methicillin-resistant S. aureus (MRSA). Our study demonstrates the importance of whole-genome sequencing for tracking the evolution of emerging and resistant pathogens. It provides a critical framework for ongoing surveillance of the clone on the Indian subcontinent and elsewhere. IMPORTANCE The Bengal Bay clone (ST772) is a community-associated and multidrug-resistant Staphylococcus aureus lineage first isolated from Bangladesh and India in 2004. In this study, we showed that the Bengal Bay clone emerged from a virulent progenitor circulating on the Indian subcontinent. Its subsequent global transmission was associated with travel or family contact in the region. ST772 progressively acquired specific resistance elements at limited cost to its fitness and continues to be exported globally, resulting in small-scale community and health care outbreaks. The Bengal Bay clone therefore combines the virulence potential and epidemiology of community-associated clones with the multidrug resistance of health care-associated S. aureus lineages. This study demonstrates the importance of whole-genome sequencing for the surveillance of highly antibiotic-resistant pathogens, which may emerge in the community setting of regions with poor antibiotic stewardship and rapidly spread into hospitals and communities across the world.


2021 ◽  
Author(s):  
Chelea Matchawe ◽  
Eunice M Machuka ◽  
Martina Kyalo ◽  
Patrice Bonny ◽  
Nkeunen Gerard ◽  
...  

One of the crucial public health problems today is emerging and re-emerging of multidrug-resistant bacterial pathogens coupled with a decline in the development of new antimicrobials. Non-typhoidal Salmonella is classified among the multidrug-resistant bacterial pathogens of international concern. To predict their multidrug resistance potentials, 19 assembled genomes (partial genomes) of 23 non-typhoidal Salmonella isolated at the Yaounde abattoir between December 2014 and November 2015 from live cattle (n=1), beef carcass (n=19), butchers' hands (n=1) and the beef processing environments (n=2) were explored using whole-genome sequencing. Phenotypically, while approximately 22% (n=5) of Salmonella isolates showed moderate resistance to streptomycin, 13.04 % (n=3) were multidrug-resistant. Genotypically, all the Salmonella isolates possessed high multidrug resistance potentials against several classes of antibiotics (third-generation cephalosporin and fluoroquinolone), which are assigned highest priority drugs by the World Health Organization. Moreover, more than 31% of the isolates exhibited resistance potentials to polymyxin, considered as the last resort drug with both clinical and veterinary relevance. Additionally, close to 80% of non-typhoidal Salmonella isolates in this study harbored "silent resistant genes" and thus constituted potential reservoirs of antibiotic resistance to other foodborne bacteria. Plasmids also appear to play a critical role in the horizontal transfer of antibiotic resistance genes of some isolates. The isolates showed a high degree of pathogenicity and possessed key effector proteins to establish infection in their hosts, including humans. The overall results demand prudent use of antibiotics and constant monitoring of antimicrobial resistance of non-typhoidal Salmonella in the Cameroonian abattoirs.


2007 ◽  
Vol 104 (22) ◽  
pp. 9451-9456 ◽  
Author(s):  
M. M. Mwangi ◽  
S. W. Wu ◽  
Y. Zhou ◽  
K. Sieradzki ◽  
H. de Lencastre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document