scholarly journals Transcriptional differences between the two host strains of Spodoptera frugiperda (Lepidoptera: Noctuidae)

2018 ◽  
Author(s):  
Marion Orsucci ◽  
Yves Moné ◽  
Philippe Audiot ◽  
Sylvie Gimenez ◽  
Sandra Nhim ◽  
...  

AbstractSpodoptera frugiperda, the fall armyworm (FAW), is an important agricultural pest in the Americas and an emerging pest in sub-Saharan Africa, India, East-Asia and Australia, causing damage to major crops such as corn, sorghum and soybean. While FAW larvae are considered polyphagous, differences in diet preference have been described between two genetic variants: the corn strain (sf-C) and the rice strain (sf-R). These two strains are sometimes considered as distinct species, raising the hypothesis that ost plant specialization might have driven their divergence. To test this hypothesis, we irst performed controlled reciprocal transplant (RT) experiments to address the impact of plant diet on several traits linked to the fitness of the sf-C and sf-R strains. The phenotypical data suggest that sf-C is specialized to corn. We then used RNA-Se to identify constitutive transcriptional differences between strains, regardless of diet, in laboratory as well as in natural populations. We found that variations in mitochon rial transcription levels are among the most substantial and consistent differences between the two strains. Since mitochondrial genotypes also vary between the strains, we believe the mitochondria may have a significant role in driving strain divergence.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Elizabeth Njuguna ◽  
Phophi Nethononda ◽  
Karim Maredia ◽  
Ruth Mbabazi ◽  
Paul Kachapulula ◽  
...  

Abstract It has been over five years since the first report of an outbreak of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in Africa. The highly invasive pest, native to the Americas, has since spread across the African continent attacking many crops and causing significant yield loss to Africa’s staple crop, maize. From the onset of the outbreak, there have been massive and varied responses from farmers, governments and nongovernmental organizations. This mini-review provides various perspectives on S. frugiperda control in sub-Saharan Africa, building on previously published evidence, and experiences of the authors. It also highlights new technologies and lessons learned so far from the S. frugiperda outbreaks in sub-Saharan Africa, based on which suggestions on possible integrated management approaches are proffered.


2021 ◽  
Author(s):  
Michael Hilary Otim ◽  
Komi Kouma Mokpokpo Fiaboe ◽  
Juliet Akello ◽  
Barnabas Mudde ◽  
Allan Tekkara Obonyom ◽  
...  

The fall armyworm (Spodoptera frugiperda J.E Smith) (Lepidoptera: Noctuidae) invaded Africa in 2016, and has since spread to all countries in sub-Saharan Africa, causing devastating effects on mainly maize and sorghum. The rapid spread of this pest is aided by its high reproductive rate, high migration ability, wide host range and adaptability to different environments, among others. Since its introduction, many governments purchased and distributed pesticides for emergency control, with minimal regard to their efficacy. In this chapter, we review efforts towards managing this pest, highlight key challenges, and provide our thoughts on considerations for sustainable management of the pest.


Author(s):  
Matthew W. Jordon ◽  
Talya D. Hackett ◽  
Fred Aboagye-Antwi ◽  
Vincent Y. Eziah ◽  
Owen T. Lewis

Abstract Insect crop pests are a major threat to food security in sub-Saharan Africa. Configuration of semi-natural habitat within agricultural landscapes has the potential to enhance biological pest control, helping to maintain yields whilst minimising the negative effects of pesticide use. Fall armyworm (Spodoptera frugiperda, J. E. Smith) is an increasingly important pest of maize in sub-Saharan Africa, with reports of yield loss between 12 and 45%. We investigated the patterns of fall armyworm leaf damage in maize crops in Ghana, and used pitfall traps and dummy caterpillars to assess the spatial distribution of potential fall armyworm predators. Crop damage from fall armyworm at our study sites increased significantly with distance from the field edge, by up to 4% per m. We found evidence that Araneae activity, richness and diversity correspondingly decreased with distance from semi-natural habitat, although Hymenoptera richness and diversity increased. Our preliminary findings suggest that modifying field configuration to increase the proximity of maize to semi-natural habitat may reduce fall armyworm damage and increase natural enemy activity within crops. Further research is required to determine the level of fall armyworm suppression achievable through natural enemies, and how effectively this could safeguard yields.


Insects ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 92 ◽  
Author(s):  
Marc Kenis ◽  
Hannalene du Plessis ◽  
Johnnie Van den Berg ◽  
Malick Ba ◽  
Georg Goergen ◽  
...  

The fall armyworm, Spodoptera frugiperda, a moth originating from tropical and subtropical America, has recently become a serious pest of cereals in sub-Saharan Africa. Biological control offers an economically and environmentally safer alternative to synthetic insecticides that are being used for the management of this pest. Consequently, various biological control options are being considered, including the introduction of Telenomus remus, the main egg parasitoid of S. frugiperda in the Americas, where it is already used in augmentative biological control programmes. During surveys in South, West, and East Africa, parasitized egg masses of S. frugiperda were collected, and the emerged parasitoids were identified through morphological observations and molecular analyses as T. remus. The presence of T. remus in Africa in at least five countries provides a great opportunity to develop augmentative biological control methods and register the parasitoid against S. frugiperda. Surveys should be carried out throughout Africa to assess the present distribution of T. remus on the continent, and the parasitoid could be re-distributed in the regions where it is absent, following national and international regulations. Classical biological control should focus on the importation of larval parasitoids from the Americas.


2018 ◽  
Vol 29 (5) ◽  
pp. 215-219
Author(s):  
Chipabika Gilson ◽  
Gonzalez Francisco ◽  
Georgina V. Bingham ◽  
Mathews Matimelo

Food Security is an issue that will impact everyone by 2050 and it is projected there will be a global crisis unless action is taken. Currently the fall army worm (FAW), Spodoptera frugiperda, is a new pest to the Sub-Saharan region and the outbreaks over the past two years have been devastating. A promising novel technology is the combination of a pheromone lure from ChemTica Internacional S.A. and yellow long-lasting insecticide treated ZeroFly Screen from Vestergaard SA. To test this technology, we compared the attraction and mortality of traps made of old soda bottles in five different sites of Zambia with maize and wheat crops. Besides the attraction of the pheromone-baited traps we also compared the effect of the colour of the insecticidal net, between black and yellow screens. Our results showed that in all sites there were significant differences in trap catches between lure baited and non-baited traps. A total of 1129 FAW adults were trapped, of which 51.20% were from baited traps with the yellow long-lasting insecticide treated screen, 41.45% from traps baited and the black long-lasting insecticide treated screen and 7.35% from trap without lure or the insecticide treated screen. The trap with yellow insecticide treated screen was able to trap 110 more FAW than the black treated screen and the control. Significant differences were also observed in number of moths caught from each location and district. The highest catches were recorded from wheat crops at Zambia National Service (ZNS) Farm in Chongwe and Chaloshi farm in Chisamba districts, respectively, whilst the lowest catch was recorded in a maize field at Tugama farm in Chilanga district. It was also noticed that the pheromone used is specific to FAW as no other insects were recorded in all the sites. Therefore, the pheromone lure from ChemTica and the yellow long lasting insecticide treated screen from Vestergaard SA can be used in the integrated pest management of FAW in Zambia in both, maize and wheat, these complimentary methods include but are not limited to; the use of Biopesticides – fungal, viral or bacteria based products such as Metarhizium anisopliae or bacteria-based Bacillus thuringiensis that have proven effective against fall armyworm and have been used to control it in the US and Brazil.


2005 ◽  
Vol 62 (2) ◽  
pp. 190-193 ◽  
Author(s):  
Eduardo Barbosa Beserra ◽  
José Roberto Postali Parra

Egg parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae) can be found in several crops attacking Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) eggs. It is therefore necessary to demonstrate the capacity of these natural enemies in suppressing populations of the pest to allow them to be used in biological control programs against that species. This work had the objective of evaluating the impact of egg layer distribution in S. frugiperda egg masses on the parasitism capacity of Trichogramma atopovirilia Oatman & Platner, 1983. Masses containing one, two, and three layers were used as treatments, and 1.6 parasitoid per egg of the pest were released. Parasitism percentage differences were observed among the three types of masses under study, on average 66.24 ± 8.56%, 45.20 ± 6.20%, and 40.10± 3.46% for egg masses with one, two, and three layers, respectively, demonstrating the potential of use of the parasitoid for the control of fall armyworm.


2005 ◽  
Vol 65 (1) ◽  
pp. 9-17 ◽  
Author(s):  
E. B Beserra ◽  
C. T. Dias ◽  
J. R. P. Parra

In this study we analyzed the impact of physical barriers of Spodoptera frugiperda (J. E. Smith) egg-masses on the behavior of Trichogramma atopovirilia Oatman & Platner and Trichogramma pretiosum Riley. The duration of drumming, drilling, oviposition, period spent over the egg-mass, and interval between parasitized eggs were timed, and the number of parasitized eggs were recorded. The presence of scales on the egg-masses caused a significant increase in the time spent by both parasitoids on each process and a decrease in the residence time over the egg-mass and in the number of parasitized eggs, with an increase in the number of egg layers. There was a significant decrease in the number of parasitized eggs in relation to egg-masses with one layer and no scales. We observed that the physical barriers in fall armyworm egg-masses changed the behavior of T. atopovirilia and T. pretiosum, affecting their parasitization capacity.


2018 ◽  
Author(s):  
Regan Early ◽  
Pablo González-Moreno ◽  
Sean T. Murphy ◽  
Roger Day

AbstractFall armyworm, Spodoptera frugiperda, is a crop pest native to the Americas, which has invaded and spread throughout sub-Saharan Africa within two years. Recent estimates of 20-50% maize yield loss in Africa suggest severe damage to livelihoods. Fall armyworm is still infilling its potential range in Africa, and could spread to other continents. In order to understand fall armyworm’s year-round, global, potential distribution, we used evidence of the effects of temperature and precipitation on fall armyworm life-history, combined with data on native and African distributions to construct Species Distribution Models (SDMs). Fall armyworm has only invaded areas that have a climate similar to the native distribution, validating the use of climatic SDMs. The strongest climatic limits on fall armyworm’s year-round distribution are the coldest annual temperature and the amount of rain in the wet season. Much of sub-Saharan Africa can host year-round fall armyworm populations, but the likelihoods of colonising North Africa and seasonal migrations into Europe are hard to predict. South and Southeast Asia and Australia have climate that would permit fall armyworm to invade. Current trade and transportation routes reveal Australia, China, India, Indonesia, Malaysia, Philippines, and Thailand face high threat of fall armyworm invasions originating from Africa.


2018 ◽  
Vol 29 (5) ◽  
pp. 213-214 ◽  
Author(s):  
Graham Matthews

The author introduces the next three articles on the invasion of Fall Army Worm into Sub-Saharan Africa and Asia describing how the pest spreads, the damage it causes and approaches to its control.


Sign in / Sign up

Export Citation Format

Share Document