scholarly journals F-actin patches nucleated on chromosomes coordinate capture by microtubules in oocyte meiosis

2018 ◽  
Author(s):  
Mariia Burdyniuk ◽  
Andrea Callegari ◽  
Masashi Mori ◽  
François Nédélec ◽  
Péter Lénárt

AbstractCapture of each and every chromosome by spindle microtubules is essential to prevent chromosome loss and aneuploidy. In somatic cells, astral microtubules search and capture chromosomes forming lateral attachments to kinetochores. However, this mechanism alone is insufficient in large oocytes. We have previously shown that a contractile F-actin network is additionally required to collect chromosomes scattered in the 70-μm starfish oocyte nucleus. How this F-actin-driven mechanism is coordinated with microtubule capture remained unknown. Here, we show that after nuclear envelope breakdown Arp2/3-nucleated F-actin patches form around chromosomes in a Ran-GTP-dependent manner, and we propose that these structures sterically block kinetochore-microtubule attachments. Once F-actin-driven chromosome transport is complete, coordinated disassembly of these F-actin patches allows synchronous capture by microtubules. Our observations indicate that this coordination is necessary, as early capture of chromosomes by microtubules would interfere with F-actin-driven transport leading to chromosome loss and formation of aneuploid eggs.

2018 ◽  
Vol 217 (8) ◽  
pp. 2661-2674 ◽  
Author(s):  
Mariia Burdyniuk ◽  
Andrea Callegari ◽  
Masashi Mori ◽  
François Nédélec ◽  
Péter Lénárt

Capture of each and every chromosome by spindle microtubules is essential to prevent chromosome loss and aneuploidy. In somatic cells, astral microtubules search and capture chromosomes forming lateral attachments to kinetochores. However, this mechanism alone is insufficient in large oocytes. We have previously shown that a contractile F-actin network is additionally required to collect chromosomes scattered in the 70-µm starfish oocyte nucleus. How this F-actin–driven mechanism is coordinated with microtubule capture remained unknown. Here, we show that after nuclear envelope breakdown Arp2/3-nucleated F-actin “patches” form around chromosomes in a Ran-GTP–dependent manner, and we propose that these structures sterically block kinetochore–microtubule attachments. Once F-actin–driven chromosome transport is complete, coordinated disassembly of F-actin patches allows synchronous capture by microtubules. Our observations indicate that this coordination is necessary because early capture of chromosomes by microtubules would interfere with F-actin–driven transport leading to chromosome loss and formation of aneuploid eggs.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Alexander JR Booth ◽  
Zuojun Yue ◽  
John K Eykelenboom ◽  
Tom Stiff ◽  
GW Gant Luxton ◽  
...  

To ensure proper segregation during mitosis, chromosomes must be efficiently captured by spindle microtubules and subsequently aligned on the mitotic spindle. The efficacy of chromosome interaction with the spindle can be influenced by how widely chromosomes are scattered in space. Here, we quantify chromosome-scattering volume (CSV) and find that it is reduced soon after nuclear envelope breakdown (NEBD) in human cells. The CSV reduction occurs primarily independently of microtubules and is therefore not an outcome of interactions between chromosomes and the spindle. We find that, prior to NEBD, an acto-myosin network is assembled in a LINC complex-dependent manner on the cytoplasmic surface of the nuclear envelope. This acto-myosin network remains on nuclear envelope remnants soon after NEBD, and its myosin-II-mediated contraction reduces CSV and facilitates timely chromosome congression and correct segregation. Thus, we find a novel mechanism that positions chromosomes in early mitosis to ensure efficient and correct chromosome–spindle interactions.


2018 ◽  
Author(s):  
Alexander JR Booth ◽  
Zuojun Yue ◽  
John K Eykelenboom ◽  
Tom Stiff ◽  
GW Gant Luxton ◽  
...  

AbstractTo ensure proper segregation during mitosis, chromosomes must be efficiently captured by kinetochore microtubules and subsequently aligned on the mitotic spindle. The efficacy of chromosome capture by the mitotic spindle can be influenced by how widely chromosomes are scattered in space. Here, we quantify chromosome-scattering volume (CSV) and find that it is reduced immediately after nuclear envelope breakdown (NEBD) in human cells. The reduction of CSV occurs independently of microtubules and is therefore not an outcome of interactions between chromosomes and the spindle. We find that, prior to NEBD, an acto-myosin network is assembled in a LINC complex-dependent manner on the cytoplasmic surface of the nuclear envelope. This acto-myosin network remains around chromosomes soon after NEBD, and its myosin-II-mediated contraction reduces CSV and facilitates chromosome interaction with spindle microtubules.


2002 ◽  
Vol 158 (6) ◽  
pp. 997-1003 ◽  
Author(s):  
Nasser M. Rusan ◽  
U. Serdar Tulu ◽  
Carey Fagerstrom ◽  
Patricia Wadsworth

When mammalian somatic cells enter mitosis, a fundamental reorganization of the Mt cytoskeleton occurs that is characterized by the loss of the extensive interphase Mt array and the formation of a bipolar mitotic spindle. Microtubules in cells stably expressing GFP–α-tubulin were directly observed from prophase to just after nuclear envelope breakdown (NEBD) in early prometaphase. Our results demonstrate a transient stimulation of individual Mt dynamic turnover and the formation and inward motion of microtubule bundles in these cells. Motion of microtubule bundles was inhibited after antibody-mediated inhibition of cytoplasmic dynein/dynactin, but was not inhibited after inhibition of the kinesin-related motor Eg5 or myosin II. In metaphase cells, assembly of small foci of Mts was detected at sites distant from the spindle; these Mts were also moved inward. We propose that cytoplasmic dynein-dependent inward motion of Mts functions to remove Mts from the cytoplasm at prophase and from the peripheral cytoplasm through metaphase. The data demonstrate that dynamic astral Mts search the cytoplasm for other Mts, as well as chromosomes, in mitotic cells.


2020 ◽  
pp. jbc.RA120.015142
Author(s):  
Yoshitami Hashimoto ◽  
Hirofumi Tanaka

DNA replication is a major contributor to genomic instability and protection against DNA replication perturbation is essential for normal cell division. Certain types of replication stress agents, such as aphidicolin and hydroxyurea, have been shown to cause reversible replication fork stalling, wherein replisome complexes are stably maintained with competence to restart in the S-phase of the cell cycle. If these stalled forks persist into the M-phase without a replication restart, replisomes are disassembled in a p97-dependent pathway and under-replicated DNA is subjected to mitotic DNA repair synthesis. Here, using Xenopus egg extracts, we investigated the consequences that arise when stalled forks are released simultaneously with the induction of mitosis. Ara-cytidine-5’-triphosphate (Ara-CTP)-induced stalled forks were able to restart with the addition of excess dCTPduring early mitosis before the nuclear envelope breakdown (NEB). However, stalled forks could no longer restart efficiently after NEB. Although replisome complexes were finally disassembled in a p97-dependent manner during mitotic progression whether or not fork stalling was relieved, the timing of NEB was delayed with the ongoing forks, rather than the stalled forks, and the delay was dependent on Wee1/Myt1 kinase activities. Thus, ongoing DNA replication was found to be directly linked to the regulation of Wee1/Myt1 kinases to modulate cyclin-dependent kinase (CDK) activities, owing to which DNA replication and mitosis occur in a mutually exclusive and sequential manner.


1979 ◽  
Vol 80 (3) ◽  
pp. 674-691 ◽  
Author(s):  
G Sluder

Sea urchin eggs are used to investigate the involvement of spindle microtubules in the mechanisms that control the timing of cell cycle events. Eggs are treated for 4 min with Colcemid at prophase of the first mitosis. No microtubules are assembled for at least 3 h, and the eggs do not divide. These eggs show repeated cycles of nuclear envelope breakdown (NEB) and nuclear envelope reformation (NER). Mitosis (NEB to NER) is twice as long in Colcemid-treated eggs as in the untreated controls. Interphase (NER to NEB) is the same in both. Thus, each cycle is prolonged entirely in mitosis. The chromosomes of treated eggs condense and eventually split into separate chromatids which do not move apart. This "canaphase" splitting is substantially delayed relative to anaphase onset in the control eggs. Treated eggs are irradiated after NEB with 366-nm light to inactivate the Colcemid. This allows the eggs to assemble normal spindles and divide. Up to 14 min after NEB, delays in the start of microtubule assembly give equal delays in anaphase onset, cleavage, and the events of the following cell cycle. Regardless of the delay, anaphase follows irradiation by the normal prometaphase duration. The quantity of spindle microtubules also influences the timing of mitotic events. Short Colcemid treatments administered in prophase of second division cause eggs to assemble small spindles. One blastomere is irradiated after NEB to provide a control cell with a normal-sized spindle. Cells with diminished spindles always initiate anaphase later than their controls. Telophase events are correspondingly delayed. This work demonstrates that spindle microtubules are involved in the mechanisms that control the time when the cell will initiate anaphase, finish mitosis, and start the next cell cycle.


Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3259-3266 ◽  
Author(s):  
K.T. Jones ◽  
J. Carroll ◽  
J.A. Merriman ◽  
D.G. Whittingham ◽  
T. Kono

Mature mouse oocytes are arrested at metaphase of the second meiotic division. Completion of meiosis and a block to polyspermy is caused by a series of repetitive Ca2+ transients triggered by the sperm at fertilization. These Ca2+ transients have been widely reported to last for a number of hours but when, or why, they cease is not known. Here we show that Ca2+ transients cease during entry into interphase, at the time when pronuclei are forming. In fertilized oocytes arrested at metaphase using colcemid, Ca2+ transients continued for as long as measurements were made, up to 18 hours after fertilization. Therefore sperm is able to induce Ca2+ transients during metaphase but not during interphase. In addition metaphase II oocytes, but not pronuclear stage 1-cell embryos showed highly repetitive Ca2+ oscillations in response to microinjection of inositol trisphosphate. This was explored further by treating in vitro maturing oocytes at metaphase I for 4–5 hours with cycloheximide, which induced nuclear progression to interphase (nucleus formation) and subsequent re-entry to metaphase (nuclear envelope breakdown). Fertilization of cycloheximide-treated oocytes revealed that continuous Ca2+ oscillations in response to sperm were observed after nuclear envelope breakdown but not during interphase. However interphase oocytes were able to generate Ca2+ transients in response to thimerosal. This data suggests that the ability of the sperm to trigger repetitive Ca2+ transients in oocytes is modulated in a cell cycle-dependent manner.


1997 ◽  
Vol 110 (14) ◽  
pp. 1573-1583 ◽  
Author(s):  
K. Oegema ◽  
W.F. Marshall ◽  
J.W. Sedat ◽  
B.M. Alberts

Both the nucleus and the centrosome are complex, dynamic structures whose architectures undergo cell cycle-specific rearrangements. CP190 and CP60 are two Drosophila proteins of unknown function that shuttle between centrosomes and nuclei in a cell cycle-dependent manner. These two proteins are associated in vitro, and localize to centrosomes in a microtubule independent manner. We injected fluorescently labeled, bacterially expressed CP190 and CP60 into living Drosophila embryos and followed their behavior during the rapid syncytial blastoderm divisions (nuclear cycles 10–13). Using quantitative 3-D wide-field fluorescence microscopy, we show that CP190 and CP60 cycle between nuclei and centrosomes asynchronously with the accumulation of CP190 leading that of CP60 both at centrosomes and in nuclei. During interphase, CP190 is found in nuclei. Immediately following nuclear envelope breakdown, CP190 localizes to centrosomes where it remains until telophase, thereafter accumulating in reforming nuclei. Unlike CP190, CP60 accumulates at centrosomes primarily during anaphase, where it remains into early interphase. During nuclear cycles 10 and 11, CP60 accumulates in nuclei simultaneous with nuclear envelope breakdown, suggesting that CP60 binds to an unknown nuclear structure that persists into mitosis. During nuclear cycles 12 and 13, CP60 accumulates gradually in nuclei during interphase, reaching peak levels just before nuclear envelope breakdown. Once in the nucleus, both CP190 and CP60 appear to form fibrous intranuclear networks that remain coherent even after nuclear envelope breakdown. The CP190 and CP60 networks do not co-localize extensively with each other or with DNA. This work provides direct evidence, in living cells, of a coherent protein network that may represent a nuclear skeleton.


1994 ◽  
Vol 127 (5) ◽  
pp. 1301-1310 ◽  
Author(s):  
C L Rieder ◽  
A Schultz ◽  
R Cole ◽  
G Sluder

To test the popular but unproven assumption that the metaphase-anaphase transition in vertebrate somatic cells is subject to a checkpoint that monitors chromosome (i.e., kinetochore) attachment to the spindle, we filmed mitosis in 126 PtK1 cells. We found that the time from nuclear envelope breakdown to anaphase onset is linearly related (r2 = 0.85) to the duration the cell has unattached kinetochores, and that even a single unattached kinetochore delays anaphase onset. We also found that anaphase is initiated at a relatively constant 23-min average interval after the last kinetochore attaches, regardless of how long the cell possessed unattached kinetochores. From these results we conclude that vertebrate somatic cells possess a metaphase-anaphase checkpoint control that monitors sister kinetochore attachment to the spindle. We also found that some cells treated with 0.3-0.75 nM Taxol, after the last kinetochore attached to the spindle, entered anaphase and completed normal poleward chromosome motion (anaphase A) up to 3 h after the treatment--well beyond the 9-48-min range exhibited by untreated cells. The fact that spindle bipolarity and the metaphase alignment of kinetochores are maintained in these cells, and that the chromosomes move poleward during anaphase, suggests that the checkpoint monitors more than just the attachment of microtubules at sister kinetochores or the metaphase alignment of chromosomes. Our data are most consistent with the hypothesis that the checkpoint monitors an increase in tension between kinetochores and their associated microtubules as biorientation occurs.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1069 ◽  
Author(s):  
Keyada Frye ◽  
Fioranna Renda ◽  
Maria Fomicheva ◽  
Xiaodong Zhu ◽  
Lisa Gong ◽  
...  

Here, we characterize spatial distribution of the Golgi complex in human cells. In contrast to the prevailing view that the Golgi compactly surrounds the centrosome throughout interphase, we observe characteristic differences in the morphology of Golgi ribbons and their association with the centrosome during various periods of the cell cycle. The compact Golgi complex is typical in G1; during S-phase, Golgi ribbons lose their association with the centrosome and extend along the nuclear envelope to largely encircle the nucleus in G2. Interestingly, pre-mitotic separation of duplicated centrosomes always occurs after dissociation from the Golgi. Shortly before the nuclear envelope breakdown, scattered Golgi ribbons reassociate with the separated centrosomes restoring two compact Golgi complexes. Transitions between the compact and distributed Golgi morphologies are microtubule-dependent. However, they occur even in the absence of centrosomes, which implies that Golgi reorganization is not driven by the centrosomal microtubule asters. Cells with different Golgi morphology exhibit distinct differences in the directional persistence and velocity of migration. These data suggest that changes in the radial distribution of the Golgi around the nucleus define the extent of cell polarization and regulate cell motility in a cell cycle-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document