scholarly journals Identifying small molecule binding sites for epigenetic proteins at domain-domain interfaces

2018 ◽  
Author(s):  
David Bowkett ◽  
Romain Talon ◽  
Cynthia Tallant ◽  
Chris Schofield ◽  
Frank von Delft ◽  
...  

AbstractEpigenetics is of rapidly growing field in drug discovery. Of particular interest is the role of post-translational modifications to histone and the proteins that read, write, and erase such modifications. The development of inhibitors for reader domains has focused on single domains. One of the major difficulties of designing inhibitors for reader domains, is that with the notable exception of bromodomains, they tend not to possess a well enclosed binding site amenable to small molecule inhibition. As many of the proteins in epigenetic regulation have multiple domains there are opportunities for designing inhibitors that bind at a domain-domain interface which provide a more suitable interaction pocket. Examination of X-ray structures of multiple domains involved in recognizing and modifying post-translational histone marks using the SiteMap algorithm identified potential binding sites at domain-domain interfaces. For the tandem plant homeodomain-bromodomain of SP100C, a potential inter-domain site identified computationally was validated experimentally by the discovery of ligands by X-ray crystallographic fragment screening.

2021 ◽  
Author(s):  
Sumirtha Balaratnam ◽  
Curran Rhodes ◽  
Desta Bume ◽  
Colleen Connelly ◽  
Christopher Lai ◽  
...  

Abstract The role of metabolite-responsive riboswitches in regulating gene expression in bacteria is well known and makes them useful systems for the study of RNA-small molecule interactions. Here, we study the PreQ1 riboswitch system, assessing sixteen diverse PreQ1-derived probes for their ability to selectively modify the riboswitch aptamer covalently. For the most active probe, a diazirine-based photocrosslinker, X-ray crystallography and gel-based competition assays demonstrated the mode of binding of the ligand to the aptamer, and functional assays demonstrated that the probe retains activity against the full riboswitch. Transcriptome-wide mapping using Chem-CLIP revealed a highly selective interaction between the bacterial aptamer and the small molecule. In addition, a small number of RNA targets in endogenous human transcripts were found to bind specifically to PreQ1, providing evidence for candidate PreQ1 aptamers in human RNA. This work demonstrates a stark influence of linker chemistry and structure on the ability of molecules to crosslink RNA, reveals that the PreQ1 aptamer/ligand pair are broadly useful for chemical biology applications, and provides insights into how PreQ1 interacts with human RNAs.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3811-3811 ◽  
Author(s):  
Amanda J Favreau ◽  
Fariba Shaffiey ◽  
Erin Cross ◽  
Pradeep Sathyanarayana

Abstract The recent discovery of new molecular lesions with prognostic significance in acute myeloid leukemia (AML) is enhancing our understanding of leukemia biology and our ability to identify new therapeutic targets. Previously, using the unique leukemic myeloid progenitor line AML-193, we profiled IL-3-, GM-CSF-, and G-CSF-regulated miRNA signatures. 301 miRNAs were commonly regulated by these three cytokines, and the most highly induced miRNA was miR-590-5p. Herein, we have attempted to define the functional role and clinical relevance of miR-590 in AML. We first examined the relative miR-590 expression in steady state hematopoiesis and showed it was highest at CD34+ and declined its expression through myeloid lineage differentiation (ANOVA, p<0.0001). To functionally determine the role of increased miR-590 expression, we generated a gain-of-function model in human CD34+ hematopoietic stem cells (HSC) via lentivirus transduction. Increased expression of miR-590 in CD34+ cells resulted in significant increases in CFU-GM colonies, strongly suggesting that dysregulation of miR-590 expression may be myeloproliferative. In AML (n=33) and control (n=9) bone marrow samples, miR-590 expression was determined via RT-qPCR. miR-590-5p expression was highly upregulated in 22 of the samples (67%) compared to control subjects. In silico analysis of the miR-590-5p promoter revealed three potential binding sites for STAT5 (-249, -749, -1499). To functionally determine whether STAT5 directly regulates miR-590-5p expression, we performed a ChIP assay, which showed that STAT5 binds to the -749 region of miR-590-5p promoter. To conclusively determine the STAT5 binding sites, we cloned the miR-590 promoter in a luciferase vector and performed site directed mutagenesis for each potential binding site. This assay confirmed that the -749 binding site was the major STAT5 regulatory site for miR-590 (p<0.002). Importantly, constitutive activation of STAT5 is a hallmark of AML associated with FLT3 mutations, therefore, we set out to determine if specific STAT5 and FLT3 inhibitors could decrease miR-590 expression. We pretreated MV4-11 cells, which harbors the FLT-ITD mutation and has increased STAT5 activation, with 100uM STAT5 inhibitor (N′-((4-Oxo-4H-chromen-3-yl)methylene)nicotinohydrazide) for 90 minutes or 100nM FLT3 inhibitor (EMD Millipore, 343020) for 12 hours, both of which resulted in significant inhibition of miR-590-5p expression (p<0.05). To evaluate whether the AML samples with high miR-590 expression also possess elevated phospho-STAT5 or phospho-FLT3 levels, we performed immunohistochemistry analysis on a custom-made tissue microarray. In AML samples with high miR-590 levels, increased activation of FLT3 and STAT5 was observed compared to controls. Since FLT3 mutations result in decreased survival and poorer prognosis in AML, it may be that miR-590-5p plays an important role in the pathology of AML associated with dysregulated FLT3 and STAT5. To understand the complete functional role of miR-590 in AML, the predicted targets need to be identified and validated for their roles in leukemogenesis. Upon molecular screening of several predicted targets, FasL was experimentally found to be a conserved target of miR-590. More specifically, 3’UTR analysis of FasL revealed three potential seed sequences for miR-590 which have been verified experimentally via luciferase assay. Furthermore, significantly increased levels of FasL protein and transcript expression was detected in the MV4-11 cells stably expressing anti-miR-590 compared to control cells. Additionally, we identified the levels of Fas/CD95 (FasL receptor) on AML-193 and MV4-11 cell lines and found these cells had high Fas/CD95 expression on the cell surface as analyzed via flow cytometry. In order to determine the physiological significance of Fas/FasL, these cells were treated with soluble FasL (100ng) for 24 hours and apoptosis was analyzed via Annexin V staining. FasL treatment induced increased apoptosis compared to the untreated cells. Taken together, we have identified miR-590 as a candidate oncomiR that is regulated via the STAT5 pathway and targets FasL to promote cell survival. Thus, our data suggests that further understanding of miR-590’s role in AML may lead to development of novel anti-miR-590 therapeutic strategies in AML associated with dysregulated STAT5. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 60 (1) ◽  
pp. 219-240 ◽  
Author(s):  
Brandon M. Brown ◽  
Heesung Shim ◽  
Palle Christophersen ◽  
Heike Wulff

The three small-conductance calcium-activated potassium (KCa2) channels and the related intermediate-conductance KCa3.1 channel are voltage-independent K+ channels that mediate calcium-induced membrane hyperpolarization. When intracellular calcium increases in the channel vicinity, it calcifies the flexible N lobe of the channel-bound calmodulin, which then swings over to the S4-S5 linker and opens the channel. KCa2 and KCa3.1 channels are highly druggable and offer multiple binding sites for venom peptides and small-molecule blockers as well as for positive- and negative-gating modulators. In this review, we briefly summarize the physiological role of KCa channels and then discuss the pharmacophores and the mechanism of action of the most commonly used peptidic and small-molecule KCa2 and KCa3.1 modulators. Finally, we describe the progress that has been made in advancing KCa3.1 blockers and KCa2.2 negative- and positive-gating modulators toward the clinic for neurological and cardiovascular diseases and discuss the remaining challenges.


2014 ◽  
Vol 70 (2) ◽  
pp. 329-341 ◽  
Author(s):  
Adela Rodríguez-Romero ◽  
Alejandra Hernández-Santoyo ◽  
Deyanira Fuentes-Silva ◽  
Laura A. Palomares ◽  
Samira Muñoz-Cruz ◽  
...  

Endogenous glycosylated Hev b 2 (endo-β-1,3-glucanase) fromHevea brasiliensisis an important latex allergen that is recognized by IgE antibodies from patients who suffer from latex allergy. The carbohydrate moieties of Hev b 2 constitute a potentially important IgE-binding epitope that could be responsible for its cross-reactivity. Here, the structure of the endogenous isoform II of Hev b 2 that exhibits three post-translational modifications, including an N-terminal pyroglutamate and two glycosylation sites at Asn27 and at Asn314, is reported from two crystal polymorphs. These modifications form a patch on the surface of the molecule that is proposed to be one of the binding sites for IgE. A structure is also proposed for the most importantN-glycan present in this protein as determined by digestion with specific enzymes. To analyze the role of the carbohydrate moieties in IgE antibody binding and in human basophil activation, the glycoallergen was enzymatically deglycosylated and evaluated. Time-lapse automated video microscopy of basophils stimulated with glycosylated Hev b 2 revealed basophil activation and degranulation. Immunological studies suggested that carbohydrates on Hev b 2 represent an allergenic IgE epitope. In addition, a dimer was found in each asymmetric unit that may reflect a regulatory mechanism of this plant defence protein.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246181
Author(s):  
Matthew R. Freidel ◽  
Roger S. Armen

The 2019 emergence of, SARS-CoV-2 has tragically taken an immense toll on human life and far reaching impacts on society. There is a need to identify effective antivirals with diverse mechanisms of action in order to accelerate preclinical development. This study focused on five of the most established drug target proteins for direct acting small molecule antivirals: Nsp5 Main Protease, Nsp12 RNA-dependent RNA polymerase, Nsp13 Helicase, Nsp16 2’-O methyltransferase and the S2 subunit of the Spike protein. A workflow of solvent mapping and free energy calculations was used to identify and characterize favorable small-molecule binding sites for an aromatic pharmacophore (benzene). After identifying the most favorable sites, calculated ligand efficiencies were compared utilizing computational fragment screening. The most favorable sites overall were located on Nsp12 and Nsp16, whereas the most favorable sites for Nsp13 and S2 Spike had comparatively lower ligand efficiencies relative to Nsp12 and Nsp16. Utilizing fragment screening on numerous possible sites on Nsp13 helicase, we identified a favorable allosteric site on the N-terminal zinc binding domain (ZBD) that may be amenable to virtual or biophysical fragment screening efforts. Recent structural studies of the Nsp12:Nsp13 replication-transcription complex experimentally corroborates ligand binding at this site, which is revealed to be a functional Nsp8:Nsp13 protein-protein interaction site in the complex. Detailed structural analysis of Nsp13 ZBD conformations show the role of induced-fit flexibility in this ligand binding site and identify which conformational states are associated with efficient ligand binding. We hope that this map of over 200 possible small-molecule binding sites for these drug targets may be of use for ongoing discovery, design, and drug repurposing efforts. This information may be used to prioritize screening efforts or aid in the process of deciphering how a screening hit may bind to a specific target protein.


2000 ◽  
Vol 56 (s1) ◽  
pp. s261-s261
Author(s):  
M. Fatih ◽  
C. Didierjean ◽  
C. Corbier ◽  
S. Boschi-Muller ◽  
G. Branlant ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document