scholarly journals A genetic link between whole-plant water use efficiency and leaf carbon isotope composition in the C4 grass Setaria

2018 ◽  
Author(s):  
Patrick Z. Ellsworth ◽  
Max J. Feldman ◽  
Ivan Baxter ◽  
Asaph B. Cousins

AbstractIncreasing whole plant water use efficiency (yield per transpiration; WUEplant) through plant breeding can benefit the sustainability of agriculture and improve crop yield under drought. To select for WUEplant, an efficient phenotyping method that reports on the genetic contribution of component traits such as transpiration efficiency (TEi; rate of CO2 assimilation per stomatal conductance) must be developed. Leaf carbon stable isotope composition (δ13Cleaf) has been proposed as a high-throughput proxy for TEi, and a negative correlation between δ13Cleaf and both WUEplant and TEi has previously been demonstrated in several C4 grass species. Therefore, the aim of the research presented here was to determine if the same loci control δ13Cleaf, WUEplant, and TEi under well-watered and water-limited conditions in a recombinant inbred line (RIL) population of closely related C4 grasses Setaria viridis and S. italica. Three quantitative trait loci (QTL) for δ13Cleaf were co-localized with transpiration, biomass, and a linear model of WUE. When WUEplant was calculated for allele classes based on the three QTL for δ13Cleaf, δ13Cleaf was negatively correlated with WUEplant as theory predicts when WUEplant is in part driven by differences in TEi. In any population, multiple traits can influence WUEplant; however, the analysis of δ13Cleaf in this RIL population demonstrates that there is genetic control of TEi that significantly contributes to WUEplant. Furthermore, this research suggests that δ13Cleaf can be used in marker-assisted breeding to select for TEi and as a tool to better understand the physiology and genetic architecture of TEi and WUEplant in C4 species.Significance StatementOverextended water resources and drought are major agricultural problems worldwide. Therefore, selection for increased plant water use efficiency (WUEplant) in food and biofuel crop species is an important trait in plant breeding programs. Leaf carbon isotopic composition (δ13Cleaf) has potential as a rapid and effective high throughput phenotyping method for intrinsic transpiration efficiency (TEi), an important leaf-level component trait of WUEplant. Our research shows that δ13Cleaf and WUEplant share a common genetic architecture through their shared relationship with TEi. This suggests that δ13Cleaf can be used as a screen for TEi in marker-assisted plant breeding programs to improve crop drought resistance and decrease agricultural water consumption.

2015 ◽  
Vol 3 (3) ◽  
pp. 220-228 ◽  
Author(s):  
Hipólito Medrano ◽  
Magdalena Tomás ◽  
Sebastià Martorell ◽  
Jaume Flexas ◽  
Esther Hernández ◽  
...  

2014 ◽  
Vol 179 ◽  
pp. 103-111 ◽  
Author(s):  
Stefano Poni ◽  
Marco Galbignani ◽  
Eugenio Magnanini ◽  
Fabio Bernizzoni ◽  
Alberto Vercesi ◽  
...  

2006 ◽  
Vol 173 (2) ◽  
pp. 294-305 ◽  
Author(s):  
Lucas A. Cernusak ◽  
Jorge Aranda ◽  
John D. Marshall ◽  
Klaus Winter

2018 ◽  
Author(s):  
J.N. Ferguson ◽  
R.C. Meyer ◽  
K.D. Edwards ◽  
M. Humphry ◽  
O. Brendel ◽  
...  

AbstractNatural selection driven by water availability has resulted in considerable variation for traits associated with drought tolerance and leaf level water-use efficiency (WUE). In Arabidopsis, little is known about the variation of whole-plant water use (PWU) and whole-plant WUE (TE). To investigate the genetic basis of PWU, we developed a novel proxy trait by combining flowering time and rosette water use to estimate lifetime PWU. We validated its usefulness for large scale screening of mapping populations in a subset of ecotypes. This parameter subsequently facilitated the screening of water-use but also drought tolerance traits in a recombinant inbred line population derived from two Arabidopsis accessions with distinct water use strategies, namely C24 (low PWU) and Col-0 (high PWU). Subsequent quantitative trait loci (QTL) mapping and validation through near-isogenic lines identified two causal QTLs, which showed that a combination of weak and non-functional alleles of the FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) genes substantially reduced plant water-use without penalising reproductive performance. Drought tolerance traits, stomatal conductance, intrinsic water use efficiency (δ13C) and rosette water-use were independent of allelic variation at FRI and FLC, suggesting that flowering is critical in determining life-time plant water use, but not leaf-level traits.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1102
Author(s):  
Bailey Kretzler ◽  
Cristina Rodrigues Gabriel Sales ◽  
Michal Karady ◽  
Elizabete Carmo-Silva ◽  
Ian C. Dodd

Leaf-level water use efficiency (WUEi) is often used to predict whole plant water use efficiency (WUEwp), however these measures rarely correlate. A better understanding of the underlying physiological relationship between WUEi and WUEwp would enable efficient phenotyping of this important plant trait to inform future crop breeding efforts. Although WUEi varies across leaf age and position, less is understood about the regulatory mechanisms. WUEi and WUEwp were determined in Australian (cv. Krichauff) and UK (cv. Gatsby) wheat cultivars. Leaf gas exchange was measured as leaves aged and evaluated in relation to foliar abscisic acid (ABA) and 1-aminocyclopropane-1-carboxylic acid (ACC) concentration, chlorophyll content and Rubisco activity. Carbon dioxide (CO2) assimilation (A) declined more rapidly as leaves aged in the lower WUEwp genotype Gatsby. Both ACC concentration and Rubisco activity declined as leaves aged, but neither explained the variation in A. Further, stomatal conductance (gs) and stomatal sensitivity to ABA were unchanged as leaves aged, therefore WUEi was lowest in Gatsby. Maintenance of A as the leaves aged in the Australian cultivar Krichauff enabled greater biomass production even as water loss continued similarly in both genotypes, resulting in higher WUEwp.


Sign in / Sign up

Export Citation Format

Share Document