scholarly journals RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing

2018 ◽  
Author(s):  
Heidi Dvinge ◽  
Jamie Guenthoer ◽  
Peggy L. Porter ◽  
Robert K. Bradley

AbstractAlternative splicing of pre-mRNAs plays a pivotal role during the establishment and maintenance of human cell types. Characterizing thetrans-acting regulatory proteins that control alternative splicing in both healthy and malignant cells has therefore been the focus of much research. Recent work has established that even core protein components of the spliceosome, which are required for splicing to proceed, can nonetheless contribute to splicing regulation by modulating splice site choice. We here demonstrate that the RNA components of the spliceosome likewise influence alternative splicing decisions and contribute to the establishment of global splicing programs. Although these small nuclear RNAs (snRNAs), termed U1, U2, U4, U5, and U6 snRNA, are present in equal stoichiometry within the spliceosome, we found that their relative levels vary by an order of magnitude during development, across tissues, and between normal and malignant cells. Physiologically relevant perturbation of individual snRNAs drove widespread gene-specific differences in alternative splicing, but not transcriptome-wide splicing failure. Genes that were particularly sensitive to variations in snRNA abundance in a breast cancer cell line model were likewise preferentially mis-spliced within a clinically diverse cohort of invasive breast ductal carcinomas. As aberrant mRNA splicing is prevalent in many solid and liquid tumors, we propose that a full understanding of dysregulated pre-mRNA processing in cancers requires study of the RNA as well as protein components of the splicing machinery.

2021 ◽  
Author(s):  
Wen Zhang ◽  
Quanyou Wu ◽  
Guoliang Li ◽  
Zhenrong Yang ◽  
Defeng Kong ◽  
...  

Abstract Circulating tumor cell (CTC) clusters possess a much higher capability to seed metastasis than single CTCs. However, the mechanism underlying this phenomenon is still elusive and no reports have investigated the role of posttranscriptional RNA regulation in CTC clusters. Here, we compared alternative splicing (AS) and alternative polyadenylation (APA) profiles between single CTCs and CTC clusters. 994 and 836 AS events were identified in single CTCs and CTC clusters, separately. About ~20% of AS events exhibited alterations between both cell types. The differential splicing of SRSF6 was a core event that caused AS profiles’ disturbance and made CTC clusters more dangerous. Concerning APA, we identified global 3’ UTRs lengthening in CTC clusters compared with single CTCs. This change was mainly regulated by 14 core APA factors, especially PPP1CA. The altered APA profiles boosted the cell cycle of CTC clusters and reflected that CTC clusters endured less oxidative stress. Our study investigated the posttranscriptional regulation mechanisms in CTC clusters, found that the perturbation of AS and APA contributed to the superiority of CTC clusters compared with single CTCs, and laid the foundation for developing antisense oligonucleotides that inhibit metastasis by reducing CTC clusters.


1999 ◽  
Vol 1 (2) ◽  
pp. 51-62 ◽  
Author(s):  
KHALED M. ELGADI ◽  
ROBERT A. MEGUID ◽  
MING QIAN ◽  
WILEY W. SOUBA ◽  
STEVE F. ABCOUWER

Elgadi, Khaled M., Robert A. Meguid, Ming Qian, Wiley W. Souba, and Steve F. Abcouwer. Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing. Physiol. Genomics 1: 51–62, 1999.—Three human glutaminase (hGA) isoforms were identified, two of which represent isoforms previously unidentified in any species. One isoform contains an open reading frame with high homology with the rat kidney-type glutaminase, suggesting that this isoform represents the human kidney-type glutaminase, hKGA. A second isoform, termed hGAC, contains an open reading frame that matches hKGA except for a unique COOH-terminal amino acid sequence. In addition, a third human glutaminase isoform was identified from a computer search and on further analysis was found to represent an additional unique isoform, hGAM. hKGA is expressed predominantly in brain and kidney but not in liver, hGAC is expressed principally in cardiac muscle and pancreas but not in liver or brain, and hGAM is expressed solely in cardiac and skeletal muscle. hGAC is the predominant isoform expressed by a human breast cancer cell line that exhibits a high rate of glutamine utilization and glutaminase activity. Genomic Southern analysis as well as isolation and analysis of five glutaminase genomic clones suggested that all three hGA isoforms originate from the same locus and therefore represent mRNA species that are produced by tissue-specific alternative splicing of a single pre-mRNA. Furthermore, an RT-PCR assay was developed that can be used to easily differentiate between hKGA and hGAC mRNA species.


1992 ◽  
Vol 67 (02) ◽  
pp. 272-276 ◽  
Author(s):  
C Paul ◽  
E van der Logt ◽  
Pieter H Reitsma ◽  
Rogier M Bertina

SummaryAlthough normally absent from the surface of all circulating cell types, tissue factor (TF) can be induced to appear on circulating monocytes by stimulants like bacterial lipopolysaccharide (LPS) and phorbolesters. Northern analysis of RNA isolated from LPS stimulated human monocytes demonstrates the presence of 2.2 kb and 3.1 kb TF mRNA species. The 2.2 kb message codes for the TF protein. As demonstrated by Northern blot analysis with a variety of TF gene probes, the 3.1 kb message arises from an alternative splicing process which fails to remove 955 bp from intron 1. Because of a stop codon in intron 1 no TF protein is produced from the 3.1 kb transcript. This larger transcript should therefore not be taken into account when comparing TF gene transcription and TF protein levels.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. S. Christina ◽  
R. Lakshmi Sundaram ◽  
V. Sivamurugan ◽  
D. Thirumal Kumar ◽  
C. D. Mohanapriya ◽  
...  

AbstractMatrix metalloproteinases (MMPs) are pivotal for cancer cell migration and metastasis which are generally over-expressed in such cell types. Many drugs targeting MMPs do so by binding to the conserved catalytic domains and thus exhibit poor selectivity due to domain-similarities with other proteases. We report herein the binding of a novel compound [3-(E-3,4-dihydroxycinnamaoyloxyl)-2-hydroxypropyl 9Z, 12Z-octadeca-9, 12-dienoate; Mol. wt: 516.67 Da], (C1), isolated from a seagrass, Cymodocea serrulata to the unconserved hemopexin-like (PEX) domain of MMP2 (− 9.258 kcal/mol). MD simulations for 25 ns, suggest stable ligand-target binding. In addition, C1 killed an ovarian cancer cell line, PA1 at IC50: 5.8 μM (lesser than Doxorubicin: 8.6 µM) and formed micronuclei, apoptotic bodies and nucleoplasmic bridges whilst causing DNA laddering, S and G2/M phase dual arrests and MMP disturbance, suggesting intrinsic apoptosis. The molecule increased mRNA transcripts of BAX and BAD and down-regulated cell survival genes, Bcl-xL, Bcl-2, MMP2 and MMP9. The chemical and structural details of C1 were deduced through FT-IR, GC–MS, ESI–MS, 1H and 13C NMR [both 1D and 2D] spectra.


Sign in / Sign up

Export Citation Format

Share Document