ovarian cancer cell line
Recently Published Documents


TOTAL DOCUMENTS

388
(FIVE YEARS 85)

H-INDEX

35
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Ruixia Bai ◽  
Wanying Song ◽  
Yan Cui ◽  
Haining Gao ◽  
Yuxing Zhao ◽  
...  

Abstract ObjectiveTo explore the autophagy effect of ghrelin on the ovarian cancer cell line SK-OV-3. And the lncRNA which regulate the ghrelin effect SK-OV-3 autophagy was showed.Methodsthe expression of ghrelin in the ovarian cancer tissues was analyzed according GEPIA database and HPA database. The CCK-8 was used to detect the the optimal concentration of ghrelin effect on the SK-OV-3. The influence on the SK-OV-3 cell autophagy by ghrelin was showed by detecting the expression of Beclin-1, LC3Ⅰand LC3Ⅱusing western blot. Linc00598 selected as the effecting the SK-OV-3 cells autophagy by ghrelin using RNA-Seq. And the Linc00598 which was silenced or overexressed promote the SK-OV-3 cells autophagy treated by ghrelin though western blot.ResultsGhrelin was expressed low in the ovarian cancer tissues. Ghrelin concentratio of 600 ng/ml was the optimal concentration o and 24 h was the optimal time. Ghrelin can promote the SK-OV-3 cell autophagy. Ghrelin mainly through linc00598 to promote the SK-OV-3 cells autophagy. When the linc00598 silenced, ghrelin promote SK-OV-3 cells autophagy was inhibited. And When the linc00598 overexpressed, ghrelin promote SK-OV-3 cells autophagy was inhanced.ConclusionsGhrelin promote SK-OV-3 cells autophagy. Additionally, we proved that ghrelin regulated the progression of SK-OV-3 cells autophagy by linc00598/ Beclin1 axis.


2022 ◽  
Vol 23 (1) ◽  
pp. 526
Author(s):  
Dominika Kazmierczak ◽  
Karol Jopek ◽  
Karolina Sterzynska ◽  
Michal Nowicki ◽  
Marcin Rucinski ◽  
...  

Ovarian cancer is the most lethal gynecological malignancy. The high mortality results from late diagnosis and the development of drug resistance. Drug resistance results from changes in the expression of different drug-resistance genes that may be regulated miRNA. The main aim of our study was to detect changes in miRNA expression levels in two cisplatin (CIS) and two paclitaxel (PAC)—resistant variants of the A2780 drug-sensitive ovarian cancer cell line—by miRNA microarray. The next goal was to identify miRNAs responsible for the regulation of drug-resistance genes. We observed changes in the expression of 46 miRNA that may be related to drug resistance. The overexpression of miR-125b-5p, miR-99a-5p, miR-296-3p, and miR-887-3p and downregulation of miR-218-5p, miR-221-3p, and miR-222-3p was observed in both CIS-resistant cell lines. In both PAC-resistant cell lines, we observed the upregulation of miR-221-3p, miR-222-3p, and miR-4485, and decreased expression of miR-551b-3p, miR-551b-5p, and miR-218-5p. Analysis of targets suggest that expression of important drug-resistant genes like protein Tyrosine Phosphatase Receptor Type K (PTPRK), receptor tyrosine kinase—EPHA7, Semaphorin 3A (SEMA3A), or the ATP-binding cassette subfamily B member 1 gene (ABCB1) can be regulated by miRNA.


2022 ◽  
Vol 23 (1) ◽  
pp. 535
Author(s):  
Robert J. Rabelo-Fernández ◽  
Ginette S. Santiago-Sánchez ◽  
Rohit K. Sharma ◽  
Abiel Roche-Lima ◽  
Kelvin Carrasquillo Carrion ◽  
...  

Worldwide, the number of cancer-related deaths continues to increase due to the ability of cancer cells to become chemotherapy-resistant and metastasize. For women with ovarian cancer, a staggering 70% will become resistant to the front-line therapy, cisplatin. Although many mechanisms of cisplatin resistance have been proposed, the key mechanisms of such resistance remain elusive. The RNA binding protein with multiple splicing (RBPMS) binds to nascent RNA transcripts and regulates splicing, transport, localization, and stability. Evidence indicates that RBPMS also binds to protein members of the AP-1 transcription factor complex repressing its activity. Until now, little has been known about the biological function of RBPMS in ovarian cancer. Accordingly, we interrogated available Internet databases and found that ovarian cancer patients with high RBPMS levels live longer compared to patients with low RBPMS levels. Similarly, immunohistochemical (IHC) analysis in a tissue array of ovarian cancer patient samples showed that serous ovarian cancer tissues showed weaker RBPMS staining when compared with normal ovarian tissues. We generated clustered regularly interspaced short palindromic repeats (CRISPR)-mediated RBPMS knockout vectors that were stably transfected in the high-grade serous ovarian cancer cell line, OVCAR3. The knockout of RBPMS in these cells was confirmed via bioinformatics analysis, real-time PCR, and Western blot analysis. We found that the RBPMS knockout clones grew faster and had increased invasiveness than the control CRISPR clones. RBPMS knockout also reduced the sensitivity of the OVCAR3 cells to cisplatin treatment. Moreover, β-galactosidase (β-Gal) measurements showed that RBPMS knockdown induced senescence in ovarian cancer cells. We performed RNAseq in the RBPMS knockout clones and identified several downstream-RBPMS transcripts, including non-coding RNAs (ncRNAs) and protein-coding genes associated with alteration of the tumor microenvironment as well as those with oncogenic or tumor suppressor capabilities. Moreover, proteomic studies confirmed that RBPMS regulates the expression of proteins involved in cell detoxification, RNA processing, and cytoskeleton network and cell integrity. Interrogation of the Kaplan–Meier (KM) plotter database identified multiple downstream-RBPMS effectors that could be used as prognostic and response-to-therapy biomarkers in ovarian cancer. These studies suggest that RBPMS acts as a tumor suppressor gene and that lower levels of RBPMS promote the cisplatin resistance of ovarian cancer cells.


Author(s):  
Rohini Kumari

Abstract: Musa Paradisiaca, commonly known as Banana, is a gigantic herb. Its main upright stem is called as Pseudostem. Banana plant have lots of medicinal uses.This piece of work describes the anti-cancerous activity of methanolic extracts made from pseudo stem of Musa paradisiaca. Anti-tumour activity of biogenic AgNPs has not been digged in the field of Ovarian cancer. The synthesized silver nanoparticles were identified by the formation of light-yellow colour solution and U.V-Visible spectrophotometer analysis which showed maximum absorbance at 423nm. The presence of ketones, methyl groups, nitrosamines and aromatic rings as functional groups in AgNPS was identified using FTIR. The antibacterial studies were performed by Agar Diffusion method against different strains of bacteria. The AgNPs showed antioxidant activity through DPPH assay. The antiproliferative activity of AgNPs was demonstrated against ovarian cancer cell line Pa 1 with MTT assay and confirmed using PI staining. In the toxicity study, a significant mortality rate was observed with an IC50 concentration of 250 µg, so they are cytotoxic at high concentrations of AgNPs. Keywords: Biosynthesis; Silver nanoparticles; Characterization; Antibacterial; Antioxidant; Anticancer; Flowcytometry


2021 ◽  
Vol 12 ◽  
Author(s):  
Ming Sui ◽  
Hairong Yang ◽  
Mingqi Guo ◽  
Wenle Li ◽  
Zheng Gong ◽  
...  

Ovarian cancer is the second most common gynecological malignancy, and one of the most deadly. The bottleneck restricting the treatment of ovarian cancer is its multi-drug resistance to chemotherapy. Cajanol is an isoflavone from pigeon pea (Cajanus cajan) that has been reported to have anti-tumor activity. In this work, we evaluate the effect of cajanol in reversing paclitaxel resistance of the A2780/Taxol ovarian cancer cell line in vitro and in vivo, and we discuss its mechanism of action. We found that 8 μM cajanol significantly restored the sensitivity of A2780/Taxol cells to paclitaxel, and in vivo experiments demonstrated that the combination of 0.5 mM/kg paclitaxel and 2 mM/kg cajanol significantly inhibited the growth of A2780/Taxol metastatic tumors in mice. Flow cytometry, fluorescence quantitative PCR, western blotting and immunohistochemical staining methods were used to study the mechanism of reversing paclitaxel resistance with cajanol. First, we determined that cajanol inhibits paclitaxel efflux in A2780/Taxol cells by down-regulating permeability glycoprotein (P-gp) expression, and further found that cajanol can inhibit P-gp transcription and translation through the PI3K/Akt/NF-κB pathway. The results of this work are expected to provide a new candidate compound for the development of paclitaxel sensitizers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ho-Jun Shih ◽  
Hsin-Fang Chang ◽  
Chi-Ling Chen ◽  
Pao-Ling Torng

AbstractOvarian cancer is the most lethal gynecological cancer, and it is frequently diagnosed at advanced stages, with recurrences after treatments. Treatment failure and resistance are due to hypoxia-inducible factors (HIFs) activated by cancer cells adapt to hypoxia. IGFBP3, which was previously identified as a growth/invasion/metastasis suppressor of ovarian cancer, plays a key role in inhibiting tumor angiogenesis. Although IGFBP3 can effectively downregulate tumor proliferation and vasculogenesis, its effects are only transient. Tumors enter a hypoxic state when they grow large and without blood vessels; then, the tumor cells activate HIFs to regulate cell metabolism, proliferation, and induce vasculogenesis to adapt to hypoxic stress. After IGFBP3 was transiently expressed in highly invasive ovarian cancer cell line and heterotransplant on mice, the xenograft tumors demonstrated a transient growth arrest with de-vascularization, causing tumor cell hypoxia. Tumor re-proliferation was associated with early HIF-1α and later HIF-2α activations. Both HIF-1α and HIF-2α were related to IGFBP3 expressions. In the down-expression of IGFBP3 in xenograft tumors and transfectants, HIF-2α was the major activated protein. This study suggests that HIF-2α presentation is crucial in the switching of epithelial ovarian cancer from dormancy to proliferation states. In highly invasive cells, the cancer hallmarks associated with aggressiveness could be activated to escape from the growth restriction state.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lu Deng ◽  
Dandan Wang ◽  
Shouzhen Chen ◽  
Weiguo Hu ◽  
Ru Zhang

The small leucine-rich proteoglycan (SLRP) family is widely expressed in extracellular matrix and aggravates tumor progression. However, epiphycan (EPYC), as a member of the SLRPs family, its biological function in cancer has not been confirmed. Thus, we aimed to clarify the role of EPYC in progression of ovarian cancer (OC), and further analyze the molecular mechanisms implicated in tumorigenesis. Here, we analyzed the differential expression genes of GSE38734, including 4 matched primary OC and metastatic tissues. We obtained OC RNAseqs data from the Cancer Genome Atlas (TCGA) and analyzed the correlation between EPYC expression and OC staging, pathological grading, etc. The expression of EPYC in OC and normal ovarian tissues was compared in Oncomine website. We used siRNAs to interfere the expression of EPYC in ovarian cancer cell line SKOV3. Scratch test, transwell-matrigel chamber, CCK8 assay were used to detect the changes of SKOV3 migration, invasion and proliferation ability after EPYC was interfered. We used R software to make GO and KEGG analysis of related genes of EPYC. We used the Hitpredict website to predict interacting proteins. The results showed that the expression of EPYC in metastatic ovarian cancer was higher than primary ovarian cancer, and that in primary cancer was higher than normal ovaries. After siRNA interferes with EPYC expression, the migration, invasion and proliferation of SKOV3 cells were weakened. EPYC mainly played a role in ECM organization, and involved in PI3K/Akt, focal adhesion signaling pathways. EPYC might interact with PLCG2 and CRK, and be involved in signal transduction.


Sign in / Sign up

Export Citation Format

Share Document