scholarly journals Transition State Interactions in a Promiscuous Enzyme: Sulfate and Phosphate Monoester Hydrolysis byPseudomonas aeruginosaArylsulfatase

2018 ◽  
Bert van Loo ◽  
Ryan Berry ◽  
Usa Boonyuen ◽  
Mark F. Mohamed ◽  
Marko Golicnik ◽  

ABSTRACTPseudomonas aeruginosaarylsulfatase (PAS) hydrolyses sulfate and, promiscuously, phosphate monoesters. Enzyme-catalyzed sulfate transfer is crucial to a wide variety of biological processes, but detailed studies of the mechanistic contributions to its catalysis are lacking. We present an investigation based on linear free energy relationships (LFERs) and kinetic isotope effects (KIEs) of PAS and active site mutants that suggest a key role for leaving group (LG) stabilization. In LFERs wild type PAS has a much less negative Br0nsted coefficient (βleaving groupobs-Enz= −0.33) than the uncatalyzed reaction (βleavingroupobs= −1.81). This situation is diminished when cationic active site groups are exchanged for alanine. The considerable degree of bond breaking during the TS is evidenced by an18ObridgeKIE of 1.0088. LFER and KIE data for several active site mutants point to leaving group stabilization by active-site lysine K375, in cooperation with histidine H211.15N KIEs combined with an increased sensitivity to leaving group ability of the sulfatase activity in neat D2O (Δβleaving groupH-D= +0.06) suggest that the mechanism for S-Obridgebond fission shifts, with decreasing leaving group ability, from charge compensation via Lewis acid interactions towards direct proton donation.18OnonbridgeKIEs indicate that the TS for PAS-catalyzed sulfate monoester hydrolysis has a significantly more associative character compared to the uncatalyzed reaction, while PAS-catalyzed phosphate monoester hydrolysis does not show this shift. This difference in enzyme-catalyzed TSs appears to be the major factor favoring specificity toward sulfate over phosphate in this promiscuous hydrolase, since other features are either too similar (uncatalyzed TS) or inherently favor phosphate (charge).

2021 ◽  
Martin Pfeiffer ◽  
Bernd Nidetzky ◽  
Rory Crean ◽  
Cátia Moreira ◽  
Antonietta Parracino ◽  

Cooperative interplay between the functional devices of a preorganized active site is fundamental to enzyme catalysis. A deepened understanding of this phenomenon is central to elucidating the remarkable efficiency of natural enzymes, and provides an essential benchmark for enzyme design and engineering. Here, we study the functional interconnectedness of the catalytic nucleophile (His18) in an acid phosphatase by analyzing the consequences of its replacement with aspartate. We present crystallographic, biochemical and computational evidence for a conserved mechanistic pathway via a phospho-enzyme intermediate on Asp18. Linear free-energy relationships for phosphoryl transfer from phosphomonoester substrates to His18/Asp18 provide evidence for cooperative interplay between the nucleophilic and general-acid catalytic groups in the wildtype enzyme, and its substantial loss in the H18D variant. As an isolated factor of phosphatase efficiency, the advantage of a histidine compared to an aspartate nucleophile is around 10^4-fold. Cooperativity with the catalytic acid adds ≥10^2-fold to that advantage. Empirical valence bond simulations of phosphoryl transfer from glucose 1-phosphate to His and Asp in the enzyme explain the loss of activity of the Asp18 enzyme through a combination of impaired substrate positioning in the Michaelis complex, as well as a shift from early to late protonation of the leaving group in the H18D variant. The evidence presented furthermore suggests that the cooperative nature of catalysis distinguishes the enzymatic reaction from the corresponding reaction in solution and is enabled by the electrostatic preorganization of the active site. Our results reveal sophisticated discrimination in multifunctional catalysis of a highly proficient phosphatase active site.

2014 ◽  
Vol 16 (30) ◽  
pp. 15846-15855 ◽  
Ming Huang ◽  
Darrin M. York

Depending on the nature of the leaving group, reactions may proceedviaa stepwise mechanism or through a single early TS1. Brønsted correlations can be used to distinguish these two mechanisms.

2005 ◽  
Vol 83 (9) ◽  
pp. 1667-1719 ◽  
J MW Scott

The hydrolyses of a series of organic halides, nitrates, sulphonates, and perchlorates are examined from the standpoint of thermodynamics, kinetics, temperature dependence, isotope effects, the Kurz equation, and the Guthrie linear free energy relationship. The thermodynamics of several definite bimolecular displacements are also examined. Some mechanistic revisions are suggested to reach an improved accommodation with the experimental observations.Key words: kinetics, thermodynamics, hydrolytic displacements, mechanism, ionic displacements, nucleofugality, linear free energy relationships.

Sign in / Sign up

Export Citation Format

Share Document