scholarly journals Developing a network view of type 2 diabetes risk pathways through integration of genetic, genomic and functional data

2018 ◽  
Author(s):  
Juan Fernéndez-Tajes ◽  
Kyle J Gaulton ◽  
Martijn van de Bunt ◽  
Jason Torres ◽  
Matthias Thurner ◽  
...  

AbstractGenome wide association studies (GWAS) have identified several hundred susceptibility loci for Type 2 Diabetes (T2D). One critical, but unresolved, issue concerns the extent to which the mechanisms through which these diverse signals influencing T2D predisposition converge on a limited set of biological processes. However, the causal variants identified by GWAS mostly fall into non-coding sequence, complicating the task of defining the effector transcripts through which they operate. Here, we describe implementation of an analytical pipeline to address this question. First, we integrate multiple sources of genetic, genomic, and biological data to assign positional candidacy scores to the genes that map to T2D GWAS signals. Second, we introduce genes with high scores as seeds within a network optimization algorithm (the asymmetric prize-collecting Steiner Tree approach) which uses external, experimentally-confirmed protein-protein interaction (PPI) data to generate high confidence subnetworks. Third, we use GWAS data to test the T2D-association enrichment of the “non-seed” proteins introduced into the network, as a measure of the overall functional connectivity of the network. We find: (a) non-seed proteins in the T2D protein-interaction network so generated (comprising 705 nodes) are enriched for association to T2D (p=0.0014) but not control traits; (b) stronger T2D-enrichment for islets than other tissues when we use RNA expression data to generate tissue-specific PPI networks; and (c) enhanced enrichment (p=3.9×l0−5) when we combine analysis of the islet-specific PPI network with a focus on the subset of T2D GWAS loci which act through defective insulin secretion. These analyses reveal a pattern of non-random functional connectivity between causal candidate genes atT2D GWAS loci, and highlight the products of genes including YWHAG, SMAD4 or CDK2 as contributors to T2D-relevant islet dysfunction. The approach we describe can be applied to other complex genetic and genomic data sets, facilitating integration of diverse data types into disease-associated networks.Author summaryWe were interested in the following question: as we discover more and more genetic variants associated with a complex disease, such as type 2 diabetes, will the biological pathways implicated by those variants proliferate, or will the biology converge onto a more limited set of aetiological processes? To address this, we first took the 1895 genes that map to ~100 type 2 diabetes association signals, and pruned these to a set of 451 for which combined genetic, genomic and biological evidence assigned the strongest candidacy with respect to type 2 diabetes pathogenesis. We then sought to maximally connect these genes within a curated protein-protein interaction network. We found that proteins brought into the resulting diabetes interaction network were themselves enriched for diabetes association signals as compared to appropriate control proteins. Furthermore, when we used tissue-specific RNA abundance data to filter the generic protein-protein network, we found that the enrichment for type 2 diabetes association signals was enhanced within a network filtered for pancreatic islet expression, particularly when we selected the subset of diabetes association signals acting through reduced insulin secretion. Our data demonstrate convergence of the biological processes involved in type 2 diabetes pathogenesis and highlight novel contributors.

2018 ◽  
Vol 11 (2) ◽  
pp. 1091-1103
Author(s):  
Sapana Singh Yadav ◽  
Usha Chouhan

Laminopathy is a group of rare genetic disorders, including EDMD, HGPS, Leukodystrophy and Lipodystrophy, caused by mutations in genes, encoding proteins of the nuclear lamina. Analysis of protein interaction network in the cell can be the key to understand; how complex processes, lead to diseases. Protein-protein interaction (PPI) in network analysis provides the possibility to quantify the hub proteins in large networks as well as their interacting partners. A comprehensive genes/proteins dataset related to Laminopathy is created by analysing public proteomic data and text mining of scientific literature. From this dataset the associated PPI network is acquired to understand the relationships between topology and functionality of the PPI network. The extended network of seed proteins including one giant network consisted of 381 nodes connected via 1594 edges (Fusion) and 390 nodes connected via 1645 edges (Coexpression), targeted for analysis. 20 proteins with high BC and large degree have been identified. LMNB1 and LMNA with highest BC and Closeness centrality located in the centre of the network. The backbone network derived from giant network with high BC proteins presents a clear and visual overview which shows all important proteins of Laminopathy and the crosstalk between them. Finally, the robustness of central proteins and accuracy of backbone are validated by 248 test networks. Based on the network topological parameters such as degree, closeness centrality, betweenness centrality we found out that integrated PPIN is centred on LMNB1 and LMNA. Although finding of other interacting partners strongly represented as novel drug targets for Laminopathy.


2020 ◽  
Vol 17 (6) ◽  
pp. 566-575 ◽  
Author(s):  
Yukun Zhu ◽  
Xuelu Ding ◽  
Zhaoyuan She ◽  
Xue Bai ◽  
Ziyang Nie ◽  
...  

Background: Alzheimer’s Disease (AD) and Type 2 Diabetes Mellitus (T2DM) have an increased incidence in modern society. Although increasing evidence has supported the close linkage between these two disorders, the inter-relational mechanisms remain to be fully elucidated. Objective: The primary purpose of this study is to explore the shared pathophysiological mechanisms of AD and T2DM. Methods: We downloaded the microarray data of AD and T2DM from the Gene Expression Omnibus (GEO) database and constructed co-expression networks by Weighted Gene Co-Expression Network Analysis (WGCNA) to identify gene network modules related to AD and T2DM. Then, Gene Ontology (GO) and pathway enrichment analysis were performed on the common genes existing in the AD and T2DM related modules by clusterProfiler and DOSE package. Finally, we utilized the STRING database to construct the protein-protein interaction network and found out the hub genes in the network. Results: Our findings indicated that seven and four modules were the most significant with AD and T2DM, respectively. Functional enrichment analysis showed that AD and T2DM common genes were mainly enriched in signaling pathways such as circadian entrainment, phagosome, glutathione metabolism and synaptic vesicle cycle. Protein-protein interaction network construction identified 10 hub genes (CALM1, LRRK2, RBX1, SLC6A1, TXN, SNRPF, GJA1, VWF, LPL, AGT) in AD and T2DM shared genes. Conclusions: Our work identified common pathogenesis of AD and T2DM. These shared pathways might provide a novel idea for further mechanistic studies and hub genes that may serve as novel therapeutic targets for diagnosis and treatment of AD and T2DM.


2021 ◽  
Vol 20 (10) ◽  
pp. 2063-2069
Author(s):  
Awais Wahab ◽  
Ghulam Murtaza ◽  
Hafsa Anam ◽  
Chuanhong Wu

Purpose: To evaluate the molecular mechanism of kojic acid by network pharmacology.Methods: This study was conducted by designing a protein-protein interaction network through the STITCH database and analyzing biological processes via Cytoscape plugin ClueGO.Results: A total of 19 protein targets of kojic acid including TYR, NOS3, NOS2, and NOS1 were found. The PPI network helped to understand the mode of action of kojic acid at a molecular level. Gene Ontology (GO) analysis resulted in the retrieval of 104 GO terms which were related to variousphysiological processes. GO analysis revealed that kojic acid might be involved in the regulation of several biological processes such as circadian gene expression and transcription initiation of RNA polymerase 2.Conclusion: The findings from this study reveal that the retrieved GO pathways are known to be involved in several diseases such as inflammation, cancer, aging, pigmentation, and melisma. Furthermore, these pathways are directly or indirectly related to kojic acid. Thus, this study has contributed to a better understanding of the mode of action of kojic acid.


2018 ◽  
Vol 7 ◽  
pp. e1137
Author(s):  
Mostafa Rezaei Tavirani ◽  
Farshad Okhovatian ◽  
Mohammad Rostami-Nejad ◽  
Sina Rezaei Tavirani

Background: Posttraumatic stress disorder (PTSD) is known by a number of mental disorders, including recurring memories of trauma, mental appalling, and escaping of sign that make them recall the trauma in question. Clinical interviews serve as the main diagnostic tool for PTSD. With respect to treatment, either pharmacotherapy or psychotherapy or a combination of both is used as a therapeutic method for PTSD. In this study, a number of crucial genes related to PTSD, which can be considered as biomarker candidates, were represented. Materials and Methods: The genes related to PTSD were extracted from the STRING database and organized in a protein-protein interaction network with the help of Cytoscape software version 3.6.0. The network was analyzed, and the important genes were introduced based on central indices. The biological processes related to the crucial genes were enriched via gene ontology using ClueGO. Results: From a total of 100 genes, 63 genes were extracted that formed the main connected component, and of these, 12 crucial genes¾POMC, BDNF, FOS, NR3C1, CRH, IL6, NPS, HTR1A, NPY, CREB1, CRHR1, and TAC1¾were introduced. Biological processes were classified into the regulation of corticosterone, regulation of behavior, response to fungus, multicellular organism response to stress, and associative learning. Conclusion: The introduced 12 crucial genes can be used as a biomarker panel related to PTSD and can be considered as a diagnostic reagent or drug target; however, more investigations are needed to use these genes as biomarkers.[GMJ.2018;7:e1137]


2017 ◽  
Vol 8 (Suppl 1) ◽  
pp. S20-S21 ◽  
Author(s):  
Akram Safaei ◽  
Mostafa Rezaei Tavirani ◽  
Mona Zamanian Azodi ◽  
Alireza Lashay ◽  
Seyed Farzad Mohammadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document