scholarly journals Neuropathological correlates and genetic architecture of microglial activation in elderly human brain

2018 ◽  
Author(s):  
Daniel Felsky ◽  
Tina Roostaei ◽  
Kwangsik Nho ◽  
Shannon L. Risacher ◽  
Elizabeth M. Bradshaw ◽  
...  

AbstractMicroglia, the resident immune cells of the brain, have important roles in brain health. However, little is known about the regulation and consequences of microglial activation in the aging human brain. We assessed the effect of microglial activation in the aging human brain by calculating the proportion of activated microglia (PAM), based on morphologically defined stages of activation in four regions sampled postmortem from up to 225 elderly individuals. We found that cortical and not subcortical PAM measures were strongly associated with β-amyloid, tau-related neuropathology, and rates of cognitive decline. Effect sizes for PAM measures are substantial, comparable to that of APOE ɛ4, the strongest genetic risk factor for Alzheimer’s disease. Mediation modeling suggests that PAM accelerates accumulation of tau pathology leading to cognitive decline, supporting an upstream role for microglial activation in Alzheimer’s disease. Genome-wide analyses identified a common variant (rs2997325) influencing cortical PAM that also affected in vivo microglial activation measured by positron emission tomography using [11C]-PBR28 in an independent cohort. Finally, we identify overlaps of PAM’s genetic architecture with those of Alzheimer’s disease, educational attainment, and several other traits.

2021 ◽  
Author(s):  
Cherie Strikwerda-Brown ◽  
Hazal Ozlen ◽  
Alexa Pichet Binette ◽  
Marianne Chapleau ◽  
Natalie Marchant ◽  
...  

Mindfulness, defined as the ability to engage in non-judgmental awareness of the present moment, has been associated with an array of health benefits. Mindfulness may also represent a protective factor for Alzheimer's disease (AD). Here, we tested the potential protective effect of trait mindfulness on cognitive decline and AD pathology in older adults at risk of AD dementia. Measures of trait mindfulness, longitudinal cognitive assessments, and AB- and tau- positron emission tomography (PET) scans were collected in 261 nondemented older adults with a family history of AD dementia from the PREVENT-AD observational cohort study. Multivariate partial least squares analyses were used to examine relationships between combinations of different facets of trait mindfulness and (1) cognitive decline, (2) AB, and (3) tau. Higher levels of trait mindfulness, particularly mindful nonjudgment, were associated with less cognitive decline, AB, and tau. Trait mindfulness may represent a psychological protective factor for AD dementia.


2020 ◽  
Vol 12 (534) ◽  
pp. eaaz4069 ◽  
Author(s):  
Kamalini G. Ranasinghe ◽  
Jungho Cha ◽  
Leonardo Iaccarino ◽  
Leighton B. Hinkley ◽  
Alexander J. Beagle ◽  
...  

Neural synchrony is intricately balanced in the normal resting brain but becomes altered in Alzheimer’s disease (AD). To determine the neurophysiological manifestations associated with molecular biomarkers of AD neuropathology, in patients with AD, we used magnetoencephalographic imaging (MEGI) and positron emission tomography with amyloid-beta (Aβ) and TAU tracers. We found that alpha oscillations (8 to 12 Hz) were hyposynchronous in occipital and posterior temporoparietal cortices, whereas delta-theta oscillations (2 to 8 Hz) were hypersynchronous in frontal and anterior temporoparietal cortices, in patients with AD compared to age-matched controls. Regional patterns of alpha hyposynchrony were unique in each neurobehavioral phenotype of AD, whereas the regional patterns of delta-theta hypersynchrony were similar across the phenotypes. Alpha hyposynchrony strongly colocalized with TAU deposition and was modulated by the degree of TAU tracer uptake. In contrast, delta-theta hypersynchrony colocalized with both TAU and Aβ depositions and was modulated by both TAU and Aβ tracer uptake. Furthermore, alpha hyposynchrony but not delta-theta hypersynchrony was correlated with the degree of global cognitive dysfunction in patients with AD. The current study demonstrates frequency-specific neurophysiological signatures of AD pathophysiology and suggests that neurophysiological measures from MEGI are sensitive indices of network disruptions mediated by TAU and Aβ and associated cognitive decline. These findings facilitate the pursuit of novel therapeutic approaches toward normalizing network synchrony in AD.


2019 ◽  
Vol 19 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Timo Grimmer ◽  
Oliver Goldhardt ◽  
Igor Yakushev ◽  
Marion Ortner ◽  
Christian Sorg ◽  
...  

Background: Neprilysin (NEP) cleaves amyloid-β 1–42 (Aβ42) in the brain. Hence, we aimed to elucidate the effect of NEP on Aβ42 in cerebrospinal fluid (CSF) and on in vivo brain amyloid load using amyloid positron emission tomography (PET) with [11C]PiB (Pittsburgh compound B). In addition, associations with the biomarkers for neuronal injury, CSF-tau and FDG-PET, were investigated. Methods: Associations were calculated using global and voxel-based (SPM8) linear regression analyses in the same cohort of 23 highly characterized Alzheimer’s disease patients. Results: CSF-NEP was significantly inversely associated with CSF-Aβ42 and positively with the extent of neuronal injury as measured by CSF-tau and FDG-PET. Conclusions: Our results on CSF-NEP are compatible with the assumption that local degradation, amongst other mechanisms of amyloid clearance, plays a role in the development of Alzheimer’s pathology. In addition, CSF-NEP is associated with the extent and the rate of neurodegeneration.


2019 ◽  
Vol 47 (2) ◽  
pp. 390-402 ◽  
Author(s):  
Christine Bastin ◽  
Mohamed Ali Bahri ◽  
François Meyer ◽  
Marine Manard ◽  
Emma Delhaye ◽  
...  

2015 ◽  
Vol 11 (7S_Part_1) ◽  
pp. P26-P27
Author(s):  
Jonatan A. Snir ◽  
Mojmir Suchy ◽  
Geron A. Bindseil ◽  
Blaine A. Chronik ◽  
Robert H.E. Hudson ◽  
...  

2015 ◽  
Vol 11 (7S_Part_3) ◽  
pp. P128-P128
Author(s):  
Jonatan A. Snir ◽  
Mojmir Suchy ◽  
Geron A. Bindseil ◽  
Blaine A. Chronik ◽  
Robert H.E. Hudson ◽  
...  

2020 ◽  
Vol 12 (524) ◽  
pp. eaau5732 ◽  
Author(s):  
Renaud La Joie ◽  
Adrienne V. Visani ◽  
Suzanne L. Baker ◽  
Jesse A. Brown ◽  
Viktoriya Bourakova ◽  
...  

β-Amyloid plaques and tau-containing neurofibrillary tangles are the two neuropathological hallmarks of Alzheimer’s disease (AD) and are thought to play crucial roles in a neurodegenerative cascade leading to dementia. Both lesions can now be visualized in vivo using positron emission tomography (PET) radiotracers, opening new opportunities to study disease mechanisms and improve patients’ diagnostic and prognostic evaluation. In a group of 32 patients at early symptomatic AD stages, we tested whether β-amyloid and tau-PET could predict subsequent brain atrophy measured using longitudinal magnetic resonance imaging acquired at the time of PET and 15 months later. Quantitative analyses showed that the global intensity of tau-PET, but not β-amyloid–PET, signal predicted the rate of subsequent atrophy, independent of baseline cortical thickness. Additional investigations demonstrated that the specific distribution of tau-PET signal was a strong indicator of the topography of future atrophy at the single patient level and that the relationship between baseline tau-PET and subsequent atrophy was particularly strong in younger patients. These data support disease models in which tau pathology is a major driver of local neurodegeneration and highlight the relevance of tau-PET as a precision medicine tool to help predict individual patient’s progression and design future clinical trials.


Sign in / Sign up

Export Citation Format

Share Document