scholarly journals Collective decision making by rational individuals

2018 ◽  
Author(s):  
Richard P. Mann

The patterns and mechanisms of collective decision making in humans and animals have attracted both empirical and theoretical attention. Of particular interest has been the variety of social feedback rules, and the extent to which these behavioural rules can be explained and predicted from theories of rational estimation and decision making. However, models that aim to model the full range of social information use have incorporated ad hoc departures from rational decision-making theory to explain the apparent stochasticity and variability of behaviour. In this paper I develop a model of social information use and collective decision making by fully rational agents that reveals how a wide range of apparently stochastic social decision rules emerge from fundamental information asymmetries both between individuals, and between the decision-makers and the observer of those decisions. As well as showing that rational decision making is consistent with empirical observations of collective behaviour, this model makes several testable predictions about how individuals make decisions in groups, and offers a valuable perspective on how we view sources of variability in animal, and human, behaviour.

2018 ◽  
Vol 115 (44) ◽  
pp. E10387-E10396 ◽  
Author(s):  
Richard P. Mann

The patterns and mechanisms of collective decision making in humans and animals have attracted both empirical and theoretical attention. Of particular interest has been the variety of social feedback rules and the extent to which these behavioral rules can be explained and predicted from theories of rational estimation and decision making. However, models that aim to model the full range of social information use have incorporated ad hoc departures from rational decision-making theory to explain the apparent stochasticity and variability of behavior. In this paper I develop a model of social information use and collective decision making by fully rational agents that reveals how a wide range of apparently stochastic social decision rules emerge from fundamental information asymmetries both between individuals and between the decision makers and the observer of those decisions. As well as showing that rational decision making is consistent with empirical observations of collective behavior, this model makes several testable predictions about how individuals make decisions in groups and offers a valuable perspective on how we view sources of variability in animal, and human, behavior.


2017 ◽  
Vol 4 (2) ◽  
pp. 160739 ◽  
Author(s):  
Marie Pelé ◽  
Caroline Bellut ◽  
Elise Debergue ◽  
Charlotte Gauvin ◽  
Anne Jeanneret ◽  
...  

Social information use is common in a wide range of group-living animals, notably in humans. The role it plays in decision-making could be a key to understanding how social groups make collective decisions. The observation of road-crossing behaviours in the presence of other individuals is an ideal means to study the influence of social information on decision-making. This study investigated the influence of culture on social information used by pedestrians in a potentially dangerous scenario, namely road crossing. We scored the collective crossing of pedestrians at four locations in Nagoya (Japan) and three locations in Strasbourg (France). French pedestrians cross against the lights much more often (41.9%) than Japanese ones (2.1%). Individuals deciding to cross the road were strongly influenced by the behaviour and the presence of other pedestrians, especially in Japan, where a stronger conformism was noted. However, Japanese pedestrians were half as likely to be influenced by social information as their French counterparts when crossing at the red light, as they were more respectful of rules. Men show riskier behaviour than women (40.6% versus 25.7% of rule-breaking, respectively), deciding quickly and setting off earlier than women. Further related studies could help target specific preventive, culture-specific solutions for pedestrian safety.


2016 ◽  
Author(s):  
Rachael Miller ◽  
Corina J Logan ◽  
Katherine Lister ◽  
Nicola S Clayton

Corvids (birds in the crow family) are hypothesised to have a general cognitive tool-kit because they show a wide range of transferrable skills across social, physical and temporal tasks, despite differences in socioecology. However, it is unknown whether relatively asocial corvids differ from social corvids in their use of social information in the context of copying the choices of others, because only one such test has been conducted in a relatively asocial corvid. We investigated whether relatively asocial Eurasian jays (Garrulus glandarius) use social information (i.e., information made available by others). Previous studies have indicated that jays attend to social context in their caching and mate provisioning behaviour; however, it is unknown whether jays copy the choices of others. We tested the jays in two different tasks varying in difficulty, where social corvid species have demonstrated social information use in both tasks. Firstly, an object-dropping task was conducted requiring objects to be dropped down a tube to release a food reward from a collapsible platform, which corvids can learn through explicit training. Only one rook and one New Caledonian crow have learned the task using social information from a demonstrator. Secondly, we tested the birds on a simple colour discrimination task, which should be easy to solve, because it has been shown that corvids can make colour discriminations. Using the same colour discrimination task in a previous study, all common ravens and carrion crows copied the demonstrator. After observing a conspecific demonstrator, none of the jays solved the object-dropping task, though all jays were subsequently able to learn to solve the task in a non-social situation through explicit training, and jays chose the demonstrated colour at chance levels. Our results suggest that social and relatively asocial corvids differ in social information use, indicating that relatively asocial species may have secondarily lost this ability due to lack of selection pressure from an asocial environment.


2016 ◽  
Author(s):  
Rachael Miller ◽  
Corina J Logan ◽  
Katherine Lister ◽  
Nicola S Clayton

Corvids (birds in the crow family) are hypothesised to have a general cognitive tool-kit because they show a wide range of transferrable skills across social, physical and temporal tasks, despite differences in socioecology. However, it is unknown whether relatively asocial corvids differ from social corvids in their use of social information in the context of copying the choices of others, because only one such test has been conducted in a relatively asocial corvid. We investigated whether relatively asocial Eurasian jays (Garrulus glandarius) use social information (i.e., information made available by others). Previous studies have indicated that jays attend to social context in their caching and mate provisioning behaviour; however, it is unknown whether jays copy the choices of others. We tested the jays in two different tasks varying in difficulty, where social corvid species have demonstrated social information use in both tasks. Firstly, an object-dropping task was conducted requiring objects to be dropped down a tube to release a food reward from a collapsible platform, which corvids can learn through explicit training. Only one rook and one New Caledonian crow have learned the task using social information from a demonstrator. Secondly, we tested the birds on a simple colour discrimination task, which should be easy to solve, because it has been shown that corvids can make colour discriminations. Using the same colour discrimination task in a previous study, all common ravens and carrion crows copied the demonstrator. After observing a conspecific demonstrator, none of the jays solved the object-dropping task, though all jays were subsequently able to learn to solve the task in a non-social situation through explicit training, and jays chose the demonstrated colour at chance levels. Our results suggest that social and relatively asocial corvids differ in social information use, indicating that relatively asocial species may have secondarily lost this ability due to lack of selection pressure from an asocial environment.


2011 ◽  
Vol 2 (2) ◽  
pp. 226-240 ◽  
Author(s):  
Larissa Conradt

Collective decision-making plays a central part in the lives of many social animals. Two important factors that influence collective decision-making are information uncertainty and conflicting preferences. Here, I bring together, and briefly review, basic models relating to animal collective decision-making in situations with information uncertainty and in situations with conflicting preferences between group members. The intention is to give an overview about the different types of modelling approaches that have been employed and the questions that they address and raise. Despite the use of a wide range of different modelling techniques, results show a coherent picture, as follows. Relatively simple cognitive mechanisms can lead to effective information pooling. Groups often face a trade-off between decision accuracy and speed, but appropriate fine-tuning of behavioural parameters could achieve high accuracy while maintaining reasonable speed. The right balance of interdependence and independence between animals is crucial for maintaining group cohesion and achieving high decision accuracy. In conflict situations, a high degree of decision-sharing between individuals is predicted, as well as transient leadership and leadership according to needs and physiological status. Animals often face crucial trade-offs between maintaining group cohesion and influencing the decision outcome in their own favour. Despite the great progress that has been made, there remains one big gap in our knowledge: how do animals make collective decisions in situations when information uncertainty and conflict of interest operate simultaneously?


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2746 ◽  
Author(s):  
Rachael Miller ◽  
Corina J. Logan ◽  
Katherine Lister ◽  
Nicola S. Clayton

Corvids (birds in the crow family) are hypothesised to have a general cognitive tool-kit because they show a wide range of transferrable skills across social, physical and temporal tasks, despite differences in socioecology. However, it is unknown whether relatively asocial corvids differ from social corvids in their use of social information in the context of copying the choices of others, because only one such test has been conducted in a relatively asocial corvid. We investigated whether relatively asocial Eurasian jays (Garrulus glandarius) use social information (i.e., information made available by others). Previous studies have indicated that jays attend to social context in their caching and mate provisioning behaviour; however, it is unknown whether jays copy the choices of others. We tested the jays in two different tasks varying in difficulty, where social corvid species have demonstrated social information use in both tasks. Firstly, an object-dropping task was conducted requiring objects to be dropped down a tube to release a food reward from a collapsible platform, which corvids can learn through explicit training. Only one rook and one New Caledonian crow have learned the task using social information from a demonstrator. Secondly, we tested the birds on a simple colour discrimination task, which should be easy to solve, because it has been shown that corvids can make colour discriminations. Using the same colour discrimination task in a previous study, all common ravens and carrion crows copied the demonstrator. After observing a conspecific demonstrator, none of the jays solved the object-dropping task, though all jays were subsequently able to learn to solve the task in a non-social situation through explicit training, and jays chose the demonstrated colour at chance levels. Our results suggest that social and relatively asocial corvids differ in social information use, indicating that relatively asocial species may have secondarily lost this ability due to lack of selection pressure from an asocial environment.


2012 ◽  
Vol 279 (1735) ◽  
pp. 1977-1985 ◽  
Author(s):  
Frédérique Dubois ◽  
Luc-Alain Giraldeau ◽  
Denis Réale

Although natural selection should have favoured individuals capable of adjusting the weight they give to personal and social information according to circumstances, individuals generally differ consistently in their individual weighting of both types of information. Such individual differences are correlated with personality traits, suggesting that personality could directly affect individuals’ ability to collect personal or social information. Alternatively, the link between personality and information use could simply emerge as a by-product of the sequential decision-making process in a frequency-dependent context. Indeed, when the gains associated with behavioural options depend on the choices of others, an individual's sequence of arrival could constrain its choice of options leading to the emergence of correlated behaviours. Any factor such as personality that affects decision order could thus be correlated with information use. To test this new explanation, we developed an individual-based model that simulates a group of animals engaged in a game of sequential frequency-dependent decision: a producer–scrounger game. Our results confirm that the sequence of decision, in this case enforced by the order in which animals enter a foraging area, consistently influences their mean tactic use and their individual plasticity, an outcome reminiscent of the correlation reported between personality and social information use.


2020 ◽  
Vol 287 (1940) ◽  
pp. 20202690
Author(s):  
Kevin Kadak ◽  
Noam Miller

Animal groups often make decisions sequentially, from the front to the back of the group. In such cases, individuals can use the choices made by earlier ranks, a form of social information, to inform their own choice. The optimal strategy for such decisions has been explored in models which differ on, for example, whether or not agents take into account the sequence of observed choices. The models demonstrate that choices made later in a sequence are more informative, but it is not clear if animals use this information or rely instead on simpler heuristics, such as quorum rules. We show that a simple rule ‘copy the last observed choice', gives similar predictions to those of optimal models for most likely sequences. We trained groups of zebrafish to choose one arm of a Y-maze and used them to demonstrate various sequences to naive fish. We show that the naive fish appear to use a simple rule, most often copying the choice of the last demonstrator, which results in near-optimal choices at a fraction of the computational cost.


Sign in / Sign up

Export Citation Format

Share Document