scholarly journals Homozygous TRPV4 mutation causes congenital distal spinal muscular atrophy and arthrogryposis

2018 ◽  
Author(s):  
Jose Velilla ◽  
Michael Mario Marchetti ◽  
Agnes Toth-Petroczy ◽  
Claire Grosgogeat ◽  
Alexis H Bennett ◽  
...  

AbstractObjectiveThe objective of this study is to identify the genetic cause of disease in a congenital form of congenital spinal muscular atrophy and arthrogryposis (CSMAA).MethodsA 2-year-old boy was diagnosed with arthrogryposis multiplex congenita, severe skeletal abnormalities, torticollis, vocal cord paralysis and diminished lower limb movement. Whole exome sequencing was performed on the proband and family members. In silico modeling of protein structure and heterologous protein expression and cytotoxicity assays were performed to validate pathogenicity of the identified variant.ResultsWhole exome sequencing revealed a homozygous mutation in the TRPV4 gene (c.281C>T; p.S94L). The identification of a recessive mutation in TRPV4 extends the spectrum of mutations in recessive forms of the TRPV4-associated disease. p.S94L and other previously identified TRPV4 variants in different protein domains were compared in structural modeling and functional studies. In silico structural modeling suggests that the p.S94L mutation is in the disordered N-terminal region proximal to important regulatory binding sites for phosphoinositides and for PACSIN3, which could lead to alterations in trafficking and/or channel sensitivity. Functional studies by western blot and immunohistochemical analysis show that p.S94L reduces TRPV4 protein stability because of increased cytotoxicity and therefore involves a gain-of-function mechanism.ConclusionThis study identifies a novel homozygous mutation in TRPV4 as a cause of the recessive form of congenital spinal muscular atrophy and arthrogryposis.

2019 ◽  
Vol 5 (2) ◽  
pp. e312 ◽  
Author(s):  
Jose Velilla ◽  
Michael Mario Marchetti ◽  
Agnes Toth-Petroczy ◽  
Claire Grosgogeat ◽  
Alexis H. Bennett ◽  
...  

ObjectiveTo identify the genetic cause of disease in a form of congenital spinal muscular atrophy and arthrogryposis (CSMAA).MethodsA 2-year-old boy was diagnosed with arthrogryposis multiplex congenita, severe skeletal abnormalities, torticollis, vocal cord paralysis, and diminished lower limb movement. Whole-exome sequencing (WES) was performed on the proband and family members. In silico modeling of protein structure and heterologous protein expression and cytotoxicity assays were performed to validate pathogenicity of the identified variant.ResultsWES revealed a homozygous mutation in the TRPV4 gene (c.281C>T; p.S94L). The identification of a recessive mutation in TRPV4 extends the spectrum of mutations in recessive forms of the TRPV4-associated disease. p.S94L and other previously identified TRPV4 variants in different protein domains were compared in structural modeling and functional studies. In silico structural modeling suggests that the p.S94L mutation is in the disordered N-terminal region proximal to important regulatory binding sites for phosphoinositides and for PACSIN3, which could lead to alterations in trafficking and/or channel sensitivity. Functional studies by Western blot and immunohistochemical analysis show that p.S94L increased TRPV4 activity-based cytotoxicity and resultant decreased TRPV4 expression levels, therefore involves a gain-of-function mechanism.ConclusionsThis study identifies a novel homozygous mutation in TRPV4 as a cause of the recessive form of CSMAA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Xia ◽  
Yijie Feng ◽  
Lu Xu ◽  
Xiaoyang Chen ◽  
Feng Gao ◽  
...  

Spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD) are two common kinds of neuromuscular disorders sharing various similarities in clinical manifestations. SMA is an autosomal recessive genetic disorder that results from biallelic mutations of the survival motor neuron 1 gene (SMN1; OMIM 600354) on the 5q13 chromosome. DMD is an X-linked disorder caused by defects in the DMD gene (OMIM 300377) on the X chromosome. Here, for the first time, we report a case from a Chinese family who present with clinical manifestations of both two diseases, including poor motor development and progressive muscle weakness. We identified a homozygous deletion in exons 7 and 8 of the SMN1 gene and a deletion in exon 50 of the DMD gene by whole-exome sequencing (WES) and multiplex ligation-dependent probe amplification (MLPA). This case expands our understanding of diagnosis for synchronous SMA and DMD and highlights the importance of various genetic testing methods, including WES, in differential diagnosis of neuromuscular diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohd Fareed ◽  
Vikas Makkar ◽  
Ravi Angral ◽  
Mohammad Afzal ◽  
Gurdarshan Singh

AbstractNephrotic syndrome arising from monogenic mutations differs substantially from acquired ones in their clinical prognosis, progression, and disease management. Several pathogenic mutations in the COQ8B gene are known to cause nephrotic syndrome. Here, we used the whole-exome sequencing (WES) technology to decipher the genetic cause of nephrotic syndrome (CKD stage-V) in a large affected consanguineous family. Our study exposed a novel missense homozygous mutation NC_000019.9:g.41209497C > T; NM_024876.4:c.748G > A; NP_079152.3:p.(Asp250Asn) in the 9th exon of the COQ8B gene, co-segregated well with the disease phenotype. Our study provides the first insight into this homozygous condition, which has not been previously reported in 1000Genome, ClinVar, ExAC, and genomAD databases. In addition to the pathogenic COQ8B variant, the WES data also revealed some novel and recurrent mutations in the GLA, NUP107, COQ2, COQ6, COQ7 and COQ9 genes. The novel variants observed in this study have been submitted to the ClinVar database and are publicly available online with the accessions: SCV001451361.1, SCV001451725.1 and SCV001451724.1. Based on the patient's clinical history and genomic data with in silico validation, we conclude that pathogenic mutation in the COQ8B gene was causing kidney failure in an autosomal recessive manner. We recommend WES technology for genetic testing in such a consanguineous family to not only prevent the future generation, but early detection can help in disease management and therapeutic interventions.


2015 ◽  
Vol 104 (2) ◽  
pp. 286-291 ◽  
Author(s):  
Ranjith Ramasamy ◽  
M. Emre Bakırcıoğlu ◽  
Cenk Cengiz ◽  
Ender Karaca ◽  
Jason Scovell ◽  
...  

2017 ◽  
Vol 176 (5) ◽  
pp. K9-K14 ◽  
Author(s):  
Sandrine Caburet ◽  
Ronit Beck Fruchter ◽  
Bérangère Legois ◽  
Marc Fellous ◽  
Stavit Shalev ◽  
...  

Context PCOS is a heterogeneous condition characterized by hyperandrogenism and chronic anovulation and affects about 10% of women. Its etiology is poorly known, but a dysregulation of gonadotropin secretion is one of its hallmarks. Objective As the etiology of PCOS is unclear, we have performed a genome-wide analysis of a consanguineous family with three sisters diagnosed with PCOS. Methods Whole-exome sequencing and Sanger sequencing confirmation. Results Whole-exome sequencing allowed the detection of the missense variant rs104893836 located in the first coding exon of the GNRHR gene and leading to the p.Gln106Arg (p.Q106R) substitution. Sanger sequencing of all available individuals of the family confirmed that the variant was homozygous in the three affected sisters and heterozygous in both parents. Conclusions This is the first description of a GNRHR gene mutation in patients diagnosed with PCOS. Although we do not exclude a possible interaction of the identified variant with the genetic background and/or the environment, our result suggests that genetic alterations in the hypothalamo–pituitary axis may play role in the pathogenesis of PCOS.


2014 ◽  
Vol 20 (2) ◽  
pp. S269-S270 ◽  
Author(s):  
Maximilian Jameson-Lee ◽  
Vishal N. Koparde ◽  
Juliana K. Sampson ◽  
Allison F. Scalora ◽  
Haniya Khalid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document