ventricular noncompaction
Recently Published Documents


TOTAL DOCUMENTS

859
(FIVE YEARS 196)

H-INDEX

48
(FIVE YEARS 5)

Author(s):  
Tongbin Wu ◽  
Zhengyu Liang ◽  
Zengming Zhang ◽  
Canzhao Liu ◽  
Lunfeng Zhang ◽  
...  

Background: Left ventricular noncompaction cardiomyopathy (LVNC) was discovered half a century ago as a cardiomyopathy with excessive trabeculation and a thin ventricular wall. In the decades since, numerous studies have demonstrated that LVNC primarily impacts left ventricles (LVs), and is often associated with LV dilation and dysfunction. However, owing in part to the lack of suitable mouse models that faithfully mirror the selective LV vulnerability in patients, mechanisms underlying susceptibility of LV to dilation and dysfunction in LVNC remain unknown. Genetic studies have revealed that deletions and mutations in PRDM16 cause LVNC, but previous conditional Prdm16 knockout mouse models do not mirror the LVNC phenotype in patients, and importantly, the underlying molecular mechanisms by which PRDM16 deficiency causes LVNC are still unclear. Methods: Prdm16 cardiomyocyte (CM)-specific knockout ( Prdm16 cKO ) mice were generated and analyzed for cardiac phenotypes. RNA sequencing and ChIP sequencing were performed to identify direct transcriptional targets of PRDM16 in CMs. Single cell RNA sequencing in combination with Spatial Transcriptomics were employed to determine CM identity at single cell level. Results: CM-specific ablation of Prdm16 in mice caused LV-specific dilation and dysfunction, as well as biventricular noncompaction, which fully recapitulated LVNC in patients. Mechanistically, PRDM16 functioned as a compact myocardium-enriched transcription factor, which activated compact myocardial genes while repressing trabecular myocardial genes in LV compact myocardium. Consequently, Prdm16 cKO LV compact myocardial CMs shifted from their normal transcriptomic identity to a transcriptional signature resembling trabecular myocardial CMs and/or neurons. Chamber-specific transcriptional regulation by PRDM16 was in part due to its cooperation with LV-enriched transcription factors Tbx5 and Hand1. Conclusions: These results demonstrate that disruption of proper specification of compact CM may play a key role in the pathogenesis of LVNC. They also shed light on underlying mechanisms of LV-restricted transcriptional program governing LV chamber growth and maturation, providing a tangible explanation for the susceptibility of LV in a subset of LVNC cardiomyopathies.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yubi Lin ◽  
Jiana Huang ◽  
Zhiling Zhu ◽  
Zuoquan Zhang ◽  
Jianzhong Xian ◽  
...  

Abstract Background The left ventricular noncompaction cardiomyopathy (LVNC) is a rare subtype of cardiomyopathy associated with a high risk of heart failure (HF), thromboembolism, arrhythmia, and sudden cardiac death. Methods The proband with overlap phenotypes of LVNC and hypertrophic cardiomyopathy (HCM) complicates atrial fibrillation (AF), ventricular tachycardia (VT), and HF due to the diffuse myocardial lesion, which were diagnosed by electrocardiogram, echocardiogram and cardiac magnetic resonance imaging. Peripheral blood was collected from the proband and his relatives. DNA was extracted from the peripheral blood of proband for high-throughput target capture sequencing. The Sanger sequence verified the variants. The protein was extracted from the skin of the proband and healthy volunteer. The expression difference of desmocollin2 was detected by Western blot. Results The novel heterozygous truncated mutation (p.K47Rfs*2) of the DSC2 gene encoding an important component of desmosomes was detected by targeted capture sequencing. The western blots showed that the expressing level of functional desmocollin2 protein (~ 94kd) was lower in the proband than that in the healthy volunteer, indicating that DSC2 p.K47Rfs*2 obviously reduced the functional desmocollin2 protein expression in the proband. Conclusion The heterozygous DSC2 p.K47Rfs*2 remarkably and abnormally reduced the functional desmocollin2 expression, which may potentially induce the overlap phenotypes of LVNC and HCM, complicating AF, VT, and HF.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Mohammad Mehdi ◽  
Snigdha Bhatia ◽  
Mehul Patel ◽  
Ashraf Aly

Ebstein’s anomaly is characterized by the apical displacement of the septal and posterior leaflets of the tricuspid valve with atrialization of the right ventricle (RV). It is commonly associated with other heart defects including left ventricular noncompaction. We describe a case of prenatally diagnosed Ebstein’s anomaly in association with left ventricular noncompaction and a septal defect between the left ventricle and the atrialized portion of the RV (Gerbode-like defect). The patient underwent a modified Blalock−Taussig shunt followed by Glenn procedure because of severe RV hypoplasia and RV outflow tract obstruction. The patient tolerated both procedures and is doing clinically well in anticipation of Fontan procedure for single ventricle palliation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qingshan Tian ◽  
Hanxiao Niu ◽  
Dingyang Liu ◽  
Na Ta ◽  
Qing Yang ◽  
...  

Long noncoding RNAs have gained widespread attention in recent years for their crucial role in biological regulation. They have been implicated in a range of developmental processes and diseases including cancer, cardiovascular, and neuronal diseases. However, the role of long noncoding RNAs (lncRNAs) in left ventricular noncompaction (LVNC) has not been explored. In this study, we investigated the expression levels of lncRNAs in the blood of LVNC patients and healthy subjects to identify differentially expressed lncRNA that develop LVNC specific biomarkers and targets for developing therapies using biological pathways. We used Agilent Human lncRNA array that contains both updated lncRNAs and mRNAs probes. We identified 1,568 upregulated and 1,141 downregulated (log fold-change > 2.0) lncRNAs that are differentially expressed between LVNC and the control group. Among them, RP11-1100L3.7 and XLOC_002730 are the most upregulated and downregulated lncRNAs. Using quantitative real-time reverse transcription polymerase chain reaction (RT-QPCR), we confirmed the differential expression of three top upregulated and downregulated lncRNAs along with two other randomly picked lncRNAs. Gene Ontology (GO) and KEGG pathways analysis with these differentially expressed lncRNAs provide insight into the cellular pathway leading to LVNC pathogenesis. We also identified 1,066 upregulated and 1,017 downregulated mRNAs. Gene set enrichment analysis (GSEA) showed that G2M, Estrogen, and inflammatory pathways are enriched in differentially expressed genes (DEG). We also identified miRNA targets for these differentially expressed genes. In this study, we first report the use of LncRNA microarray to understand the pathogenesis of LVNC and to identify several lncRNA and genes and their targets as potential biomarkers.


Cureus ◽  
2021 ◽  
Author(s):  
Pius E Ojemolon ◽  
Endurance O Evbayekha ◽  
Jesse Odion ◽  
Jeremiah Bello ◽  
Hafeez Shaka

Sign in / Sign up

Export Citation Format

Share Document