scholarly journals Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins

2018 ◽  
Author(s):  
Michael P. Torrens-Spence ◽  
Ying-Chih Chiang ◽  
Tyler Smith ◽  
Maria A. Vicent ◽  
Yi Wang ◽  
...  

AbstractRadiation of the plant pyridoxal 5’-phosphate (PLP)-dependent aromatic L-amino acid decarboxylase (AAAD) family has yielded an array of paralogous enzymes exhibiting divergent substrate preferences and catalytic mechanisms. Plant AAADs catalyze either the decarboxylation or decarboxylation-dependent oxidative deamination of aromatic L-amino acids to produce aromatic monoamines or aromatic acetaldehydes, respectively. These compounds serve as key precursors for the biosynthesis of several important classes of plant natural products, including indole alkaloids, benzylisoquinoline alkaloids, hydroxycinnamic acid amides, phenylacetaldehyde-derived floral volatiles, and tyrosol derivatives. Here, we present the crystal structures of four functionally distinct plant AAAD paralogs. Through structural and functional analyses, we identify variable structural features of the substrate-binding pocket that underlie the divergent evolution of substrate selectivity toward indole, phenyl, or hydroxyphenyl amino acids in plant AAADs. Moreover, we describe two mechanistic classes of independently arising mutations in AAAD paralogs leading to the convergent evolution of the derived aldehyde synthase activity. Applying knowledge learned from this study, we successfully engineered a shortened benzylisoquinoline alkaloid pathway to produce (S)-norcoclaurine in yeast. This work highlights the pliability of the AAAD fold that allows change of substrate selectivity and access to alternative catalytic mechanisms with only a few mutations.SignificancePlants biosynthesize their own proteinogenic aromatic L-amino acids, namely L-phenylalanine, L-tyrosine and L-tryptophan, not only for building proteins but also for the production of a plethora of aromatic-amino-acid-derived natural products. Pyridoxal 5’-phosphate (PLP)-dependent aromatic L-amino acid decarboxylase (AAAD) family enzymes play important roles in channeling various aromatic L-amino acids into diverse downstream specialized metabolic pathways. Through comparative structural analysis of four functionally divergent plant AAAD proteins together with biochemical characterization and molecular dynamics simulations, we reveal the structural and mechanistic basis for the rich divergent and convergent evolutionary development within the plant AAAD family. Knowledge learned from this study aids our ability to engineer high-value aromatic-L-amino-acid-derived natural product biosynthesis in heterologous chassis organisms.

2020 ◽  
Vol 117 (20) ◽  
pp. 10806-10817 ◽  
Author(s):  
Michael P. Torrens-Spence ◽  
Ying-Chih Chiang ◽  
Tyler Smith ◽  
Maria A. Vicent ◽  
Yi Wang ◽  
...  

Radiation of the plant pyridoxal 5′-phosphate (PLP)-dependent aromatic l-amino acid decarboxylase (AAAD) family has yielded an array of paralogous enzymes exhibiting divergent substrate preferences and catalytic mechanisms. Plant AAADs catalyze either the decarboxylation or decarboxylation-dependent oxidative deamination of aromatic l-amino acids to produce aromatic monoamines or aromatic acetaldehydes, respectively. These compounds serve as key precursors for the biosynthesis of several important classes of plant natural products, including indole alkaloids, benzylisoquinoline alkaloids, hydroxycinnamic acid amides, phenylacetaldehyde-derived floral volatiles, and tyrosol derivatives. Here, we present the crystal structures of four functionally distinct plant AAAD paralogs. Through structural and functional analyses, we identify variable structural features of the substrate-binding pocket that underlie the divergent evolution of substrate selectivity toward indole, phenyl, or hydroxyphenyl amino acids in plant AAADs. Moreover, we describe two mechanistic classes of independently arising mutations in AAAD paralogs leading to the convergent evolution of the derived aldehyde synthase activity. Applying knowledge learned from this study, we successfully engineered a shortened benzylisoquinoline alkaloid pathway to produce (S)-norcoclaurine in yeast. This work highlights the pliability of the AAAD fold that allows change of substrate selectivity and access to alternative catalytic mechanisms with only a few mutations.


2000 ◽  
Vol 43 (1) ◽  
pp. 15-17
Author(s):  
Jaroslav Dršata ◽  
Eliška Marklová

Decarboxylation of aromatic amino acid in mammalian tissues is catalyzed by aromatic amino acid decarboxylase (EC. 4.1.1.28, AAD). The enzyme differs in its affinity to individual aromatic amino acids, the best substrates being 3,4-dihydroxyphenylalanine (dopa) and 5-hydroxytryptophan. Surprisingly, AAD is abundant in the liver, where the substrates with rather low affinity to AAD as tryptophan, phenylalanine, and tyrosine are offered to decarboxylation. In the present paper, the possibility of interference of tryptophan with decarboxylation of phenylalanine, tyrosine as well as dopa in the liver was investigated. The AAD activity was measured radiometrically with 1-14C-labeled aromatic amino acid substrates using the rat liver enzyme. The influence of tryptophan on decarboxylation of tyrosine was formally competitive with Ki = 9.2 x 10-3 M, while the inhibition of decarboxylation of phenylalanine by tryptophan was non-competitive with Ki at 2.75 x 10-2 M. The effect of tryptophan on decarboxylation of dopa was small and it could not be expressed in terms of inhibition kinetics and inhibition constant. At physiological concentrations of aromatic amino acids in plasma, tryptophan does not seem to have remarkable effects on decarboxylation of phenylalanine, tyrosine, and dopa in the liver.


Life Sciences ◽  
1982 ◽  
Vol 31 (14) ◽  
pp. 1519-1524 ◽  
Author(s):  
Erminia Barboni ◽  
Carla Borri Voltattorni ◽  
Maria D'Erme ◽  
Anna Fiori ◽  
Alba Minelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document