scholarly journals Surface color and predictability determine contextual modulation of V1 firing and gamma oscillations

2018 ◽  
Author(s):  
Alina Peter ◽  
Cem Uran ◽  
Johanna Klon-Lipok ◽  
Rasmus Roese ◽  
Sylvia van Stijn ◽  
...  

AbstractThe integration of direct bottom-up inputs with contextual information is a canonical motif in neocortical circuits. In area V1, neurons may reduce their firing rates when the (classical) receptive field input can be predicted by the spatial context. We previously hypothesized that gamma-synchronization (30-80Hz) provides a complementary signal to rates, encoding whether stimuli are predicted from spatial context by preferentially synchronizing neuronal populations receiving predictable inputs. Here we investigated how rates and synchrony are modulated by predictive context. Large uniform surfaces, which have high spatial predictability, strongly suppressed firing yet induced prominent gamma-synchronization, but only when they were colored. Yet, chromatic mismatches between center and surround, breaking predictability, strongly reduced gamma-synchronization while increasing firing rates. Differences between colors, including strong gamma-responses to red, arose because of stimulus adaptation to a full-screen background, with a prominent difference in adaptation between M- and L-cone signaling pathways. Thus, synchrony signals whether RF inputs are predicted from spatial context and may encode relationships across space, while firing rates increase when stimuli are unpredicted from the context.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Alina Peter ◽  
Cem Uran ◽  
Johanna Klon-Lipok ◽  
Rasmus Roese ◽  
Sylvia van Stijn ◽  
...  

The integration of direct bottom-up inputs with contextual information is a core feature of neocortical circuits. In area V1, neurons may reduce their firing rates when their receptive field input can be predicted by spatial context. Gamma-synchronized (30–80 Hz) firing may provide a complementary signal to rates, reflecting stronger synchronization between neuronal populations receiving mutually predictable inputs. We show that large uniform surfaces, which have high spatial predictability, strongly suppressed firing yet induced prominent gamma synchronization in macaque V1, particularly when they were colored. Yet, chromatic mismatches between center and surround, breaking predictability, strongly reduced gamma synchronization while increasing firing rates. Differences between responses to different colors, including strong gamma-responses to red, arose from stimulus adaptation to a full-screen background, suggesting prominent differences in adaptation between M- and L-cone signaling pathways. Thus, synchrony signaled whether RF inputs were predicted from spatial context, while firing rates increased when stimuli were unpredicted from context.



2018 ◽  
Vol 120 (2) ◽  
pp. 409-420 ◽  
Author(s):  
Corey M. Ziemba ◽  
Jeremy Freeman ◽  
Eero P. Simoncelli ◽  
J. Anthony Movshon

The stimulus selectivity of neurons in V1 is well known, as is the finding that their responses can be affected by visual input to areas outside of the classical receptive field. Less well understood are the ways selectivity is modified as signals propagate to visual areas beyond V1, such as V2. We recently proposed a role for V2 neurons in representing the higher order statistical dependencies found in images of naturally occurring visual texture. V2 neurons, but not V1 neurons, respond more vigorously to “naturalistic” images that contain these dependencies than to “noise” images that lack them. In this work, we examine the dependency of these effects on stimulus size. For most V2 neurons, the preference for naturalistic over noise stimuli was modest when presented in small patches and gradually strengthened with increasing size, suggesting that the mechanisms responsible for this enhanced sensitivity operate over regions of the visual field that are larger than the classical receptive field. Indeed, we found that surround suppression was stronger for noise than for naturalistic stimuli and that the preference for large naturalistic stimuli developed over a delayed time course consistent with lateral or feedback connections. These findings are compatible with a spatially broad facilitatory mechanism that is absent in V1 and suggest that a distinct role for the receptive field surround emerges in V2 along with sensitivity for more complex image structure. NEW & NOTEWORTHY The responses of neurons in visual cortex are often affected by visual input delivered to regions of the visual field outside of the conventionally defined receptive field, but the significance of such contextual modulations are not well understood outside of area V1. We studied the importance of regions beyond the receptive field in establishing a novel form of selectivity for the statistical dependencies contained in natural visual textures that first emerges in area V2.



2006 ◽  
Vol 23 (5) ◽  
pp. 721-728 ◽  
Author(s):  
D.M. ALEXANDER ◽  
J.J. WRIGHT

Contextual modulations of receptive field properties by distal stimulus configurations have been shown for a variety of stimulus paradigms. A survey of excitatory contextual modulation data for V1 shows the maximum scale of interactions, measured in terms of distance in V1, to be between 10 mm and 30 mm. Different types of excitatory contextual modulation in V1 occur throughout the interval of 40–250 ms after stimulus delivery. This window provides opportunity for global propagation of visual contextual information to a subset of V1 neurons, via several routes within the visual system. We propose a number of experiments and analyses to confirm the results from this empirical survey.



2014 ◽  
Vol 14 (15) ◽  
pp. 72-72
Author(s):  
L. E. Hallum ◽  
J. A. Movshon


2020 ◽  
Vol 14 ◽  
Author(s):  
Yanting Yao ◽  
Mengmeng Wu ◽  
Lina Wang ◽  
Longnian Lin ◽  
Jiamin Xu

The prefrontal cortex (PFC) plays a central role in executive functions and inhibitory control over many cognitive behaviors. Dynamic changes in local field potentials (LFPs), such as gamma oscillation, have been hypothesized to be important for attentive behaviors and modulated by local interneurons such as parvalbumin (PV) cells. However, the precise relationships between the firing patterns of PV interneurons and temporal dynamics of PFC activities remains elusive. In this study, by combining in vivo electrophysiological recordings with optogenetics, we investigated the activities of prefrontal PV interneurons and categorized them into three subtypes based on their distinct firing rates under different behavioral states. Interestingly, all the three subtypes of interneurons showed strong phase-locked firing to cortical high frequency oscillations (HFOs), but not to theta or gamma oscillations, despite of behavior states. Moreover, we showed that sustained optogenetic stimulation (over a period of 10 s) of PV interneurons can consequently modulate the activities of local pyramidal neurons. Interestingly, such optogenetic manipulations only showed moderate effects on LFPs in the PFC. We conclude that prefrontal PV interneurons are consist of several subclasses of cells with distinct state-dependent modulation of firing rates, selectively coupled to HFOs.



2009 ◽  
Vol 102 (4) ◽  
pp. 2334-2341 ◽  
Author(s):  
Kristen A. Ford ◽  
Stefan Everling

The basal ganglia (BG) play a central role in movement and it has been demonstrated that the discharge rate of neurons in these structures are modulated by the behavioral context of a given task. Here we used the antisaccade task, in which a saccade toward a flashed visual stimulus must be inhibited in favor of a saccade to the opposite location, to investigate the role of the caudate nucleus, a major input structure of the BG, in flexible behavior. In this study, we recorded extracellular neuronal activity while monkeys performed pro- and antisaccade trials. We identified two populations of neurons: those that preferred contralateral saccades (CSNs) and those that preferred ipsilateral saccades (ISNs). CSNs increased their firing rates for prosaccades, but not for antisaccades, and ISNs increased their firing rates for antisaccades, but not for prosaccades. We propose a model in which CSNs project to the direct BG pathway, facilitating saccades, and ISNs project to the indirect pathway, suppressing saccades. This model suggests one possible mechanism by which these neuronal populations could be modulating activity in the superior colliculus.



2001 ◽  
Vol 86 (5) ◽  
pp. 2559-2570 ◽  
Author(s):  
Masaharu Kinoshita ◽  
Hidehiko Komatsu

The perceived brightness of a surface is determined not only by the luminance of the surface (local information), but also by the luminance of its surround (global information). To better understand the neural representation of surface brightness, we investigated the effects of local and global luminance on the activity of neurons in the primary visual cortex (V1) of awake macaque monkeys. Single- and multiple-unit recordings were made from V1 while the monkeys were performing a visual fixation task. The classical receptive field of each neuron was identified as a region responding to a spot stimulus. Neural responses were assessed using homogeneous surfaces at least three times as large as the receptive field as stimuli. We first examined the sensitivity of neurons to variation in local surface luminance, while the luminance of the surround was held constant. The activity of a large majority of surface-responsive neurons (106/115) varied monotonically with changes in surface luminance; in some the dynamic range was over 3 log units. This monotonic relation between surface luminance and neural activity was more evident later in the stimulus period than early on. The effect of the global luminance on neural activity was then assessed in 81 of the surface-responsive neurons by varying the luminance of the surround while holding the luminance of the surface constant. The activity of one group of neurons (25/81) was unaffected by the luminance of the surround; these neurons appear to encode the physical luminance of a surface covering the receptive field. The responses of the other neurons were affected by the luminance of the surround. The effects of the luminances of the surface and the surround on the activities of 26 of these neurons were in the same direction (either increased or decreased), while the effects on the remaining 25 neurons were in opposite directions. The activities of the latter group of neurons seemed to parallel the perceived brightness of the surface, whereas the former seemed to encode the level of illumination. There were differences across different types of neurons with regard to the layer distribution. These findings indicate that global luminance information significantly modulates the activity of surface-responsive V1 neurons and that not only physical luminance, but also perceived brightness, of a homogeneous surface is represented in V1.



2006 ◽  
Vol 18 (4) ◽  
pp. 562-579 ◽  
Author(s):  
Ko Sakai ◽  
Haruka Nishimura

Contextual modulation reported in early- to intermediate-level visual areas could be an essential component to signal border ownership (BO) that specifies the direction of figure along a contour. The surrounding regions that evoke significant suppression or facilitation are highly localized and asymmetric with respect to the center of the classical receptive field (CRF). We propose a hypothesis that such surrounding modulation is a basis for BO-selectivity. Although this idea has been discussed for several years, it is uncertain how many of a vast variety of surrounding organizations could signal correctly the direction of ownership, and how many could signal consistently for various stimuli. We carried out computationally a population study of the surrounding effects to investigate how many cells exhibit effective and consistent BO signals. We tested hundreds of various organizations, and found that most of the asymmetric, iso-orientation suppressive regions, regardless of position or size, lead to surprisingly high consistency in the direction of ownership for various stimuli. The combinations of iso-orientation suppression and cross-orientation facilitation indicate both high robustness and consistency in the ownership determination. We constructed a model for BO-selective neurons based on the surrounding effects, and investigated whether the model reproduces major characteristics of the neuronal responses, including a variety in the BO selectivity among neurons, consistency with respect to various stimuli, invariance to stimulus size, and co-selectivity to BO and contrast. The model reproduced successfully the major characteristics of BO-selective neurons.



2010 ◽  
Vol 104 (3) ◽  
pp. 1625-1634 ◽  
Author(s):  
Aryn H. Gittis ◽  
Setareh H. Moghadam ◽  
Sascha du Lac

To fire at high rates, neurons express ionic currents that work together to minimize refractory periods by ensuring that sodium channels are available for activation shortly after each action potential. Vestibular nucleus neurons operate around high baseline firing rates and encode information with bidirectional modulation of firing rates up to several hundred Hz. To determine the mechanisms that enable these neurons to sustain firing at high rates, ionic currents were measured during firing by using the action potential clamp technique in vestibular nucleus neurons acutely dissociated from transgenic mice. Although neurons from the YFP-16 line fire at rates higher than those from the GIN line, both classes of neurons express Kv3 and BK currents as well as both transient and resurgent Na currents. In the fastest firing neurons, Kv3 currents dominated repolarization at all firing rates and minimized Na channel inactivation by rapidly transitioning Na channels from the open to the closed state. In slower firing neurons, BK currents dominated repolarization at the highest firing rates and sodium channel availability was protected by a resurgent blocking mechanism. Quantitative differences in Kv3 current density across neurons and qualitative differences in immunohistochemically detected expression of Kv3 subunits could account for the difference in firing range within and across cell classes. These results demonstrate how divergent firing properties of two neuronal populations arise through the interplay of at least three ionic currents.



Sign in / Sign up

Export Citation Format

Share Document