scholarly journals Mechanisms of Sustained High Firing Rates in Two Classes of Vestibular Nucleus Neurons: Differential Contributions of Resurgent Na, Kv3, and BK Currents

2010 ◽  
Vol 104 (3) ◽  
pp. 1625-1634 ◽  
Author(s):  
Aryn H. Gittis ◽  
Setareh H. Moghadam ◽  
Sascha du Lac

To fire at high rates, neurons express ionic currents that work together to minimize refractory periods by ensuring that sodium channels are available for activation shortly after each action potential. Vestibular nucleus neurons operate around high baseline firing rates and encode information with bidirectional modulation of firing rates up to several hundred Hz. To determine the mechanisms that enable these neurons to sustain firing at high rates, ionic currents were measured during firing by using the action potential clamp technique in vestibular nucleus neurons acutely dissociated from transgenic mice. Although neurons from the YFP-16 line fire at rates higher than those from the GIN line, both classes of neurons express Kv3 and BK currents as well as both transient and resurgent Na currents. In the fastest firing neurons, Kv3 currents dominated repolarization at all firing rates and minimized Na channel inactivation by rapidly transitioning Na channels from the open to the closed state. In slower firing neurons, BK currents dominated repolarization at the highest firing rates and sodium channel availability was protected by a resurgent blocking mechanism. Quantitative differences in Kv3 current density across neurons and qualitative differences in immunohistochemically detected expression of Kv3 subunits could account for the difference in firing range within and across cell classes. These results demonstrate how divergent firing properties of two neuronal populations arise through the interplay of at least three ionic currents.

2008 ◽  
Vol 99 (5) ◽  
pp. 2060-2065 ◽  
Author(s):  
Aryn H. Gittis ◽  
Sascha du Lac

Sodium currents in fast firing neurons are tuned to support sustained firing rates >50–60 Hz. This is typically accomplished with fast channel kinetics and the ability to minimize the accumulation of Na channels into inactivated states. Neurons in the medial vestibular nuclei (MVN) can fire at exceptionally high rates, but their Na currents have never been characterized. In this study, Na current kinetics and voltage-dependent properties were compared in two classes of MVN neurons with distinct firing properties. Non-GABAergic neurons (fluorescently labeled in YFP-16 transgenic mice) have action potentials with faster rise and fall kinetics and sustain higher firing rates than GABAergic neurons (fluorescently labeled in GIN transgenic mice). A previous study showed that these neurons express a differential balance of K currents. To determine whether the Na currents in these two populations were different, their kinetics and voltage-dependent properties were measured in acutely dissociated neurons from 24- to 40-day-old mice. All neurons expressed persistent Na currents and large transient Na currents with resurgent kinetics tuned for fast firing. No differences were found between the Na currents expressed in GABAergic and non-GABAergic MVN neurons, suggesting that differences in properties of these neurons are tuned by their K currents.


1988 ◽  
Vol 254 (6) ◽  
pp. H1157-H1166 ◽  
Author(s):  
J. A. Wasserstrom ◽  
J. J. Salata

We studied the effects of tetrodotoxin (TTX) and lidocaine on transmembrane action potentials and ionic currents in dog isolated ventricular myocytes. TTX (0.1-1 x 10(-5) M) and lidocaine (0.5-2 x 10(-5) M) decreased action potential duration, but only TTX decreased the maximum rate of depolarization (Vmax). Both TTX (1-2 x 10(-5) M) and lidocaine (2-5 x 10(-5) M) blocked a slowly inactivating toward current in the plateau voltage range. The voltage- and time-dependent characteristics of this current are virtually identical to those described in Purkinje fibers for the slowly inactivating inward Na+ current. In addition, TTX abolished the outward shift in net current at plateau potentials caused by lidocaine alone. Lidocaine had no detectable effect on the slow inward Ca2+ current and the inward K+ current rectifier, Ia. Our results indicate that 1) there is a slowly inactivating inward Na+ current in ventricular cells similar in time, voltage, and TTX sensitivity to that described in Purkinje fibers; 2) both TTX and lidocaine shorten ventricular action potentials by reducing this slowly inactivating Na+ current; 3) lidocaine has no additional actions on other ionic currents that contribute to its ability to abbreviate ventricular action potentials; and 4) although both agents shorten the action potential by the same mechanism, only TTX reduces Vmax. This last point suggests that TTX produces tonic block of Na+ current, whereas lidocaine may produce state-dependent Na+ channel block, namely, blockade of Na+ current only after Na+ channels have already been opened (inactivated-state block).


1985 ◽  
Vol 86 (5) ◽  
pp. 739-762 ◽  
Author(s):  
G K Wang ◽  
G Strichartz

The effects of a neurotoxin, purified from the venom of the scorpion Leiurus quinquestriatus, on the ionic currents of toad single myelinated fibers were studied under voltage-clamp conditions. Unlike previous investigations using crude scorpion venom, purified Leiurus toxin II alpha at high concentrations (200-400 nM) did not affect the K currents, nor did it reduce the peak Na current in the early stages of treatment. The activation of the Na channel was unaffected by the toxin, the activation time course remained unchanged, and the peak Na current vs. voltage relationship was not altered. In contrast, Na channel inactivation was considerably slowed and became incomplete. As a result, a steady state Na current was maintained during prolonged depolarizations of several seconds. These steady state Na currents had a different voltage dependence from peak Na currents and appeared to result from the opening of previously inactivated Na channels. The opening kinetics of the steady state current were exponential and had rates approximately 100-fold slower than the normal activation processes described for transitions from the resting state to the open state. In addition, the dependence of the peak Na current on the potential of preceding conditioning pulses was also dramatically altered by toxin treatment; this parameter reached a minimal value near a membrane potential of -50 mV and then increased continuously to a "plateau" value at potentials greater than +50 mV. The amplitude of this plateau was dependent on toxin concentration, reaching a maximum value equal to approximately 50% of the peak current; voltage-dependent reversal of the toxin's action limits the amplitude of the plateauing effect. The measured plateau effect was half-maximum at a toxin concentration of 12 nM, a value quite similar to the concentration producing half of the maximum slowing of Na channel inactivation. The results of Hill plots for these actions suggest that one toxin molecule binds to one Na channel. Thus, the binding of a single toxin molecule probably both produces the steady state currents and slows the Na channel inactivation. We propose that Leiurus toxin inhibits the conversion of the open state to inactivated states in a voltage-dependent manner, and thereby permits a fraction of the total Na permeability to remain at membrane potentials where inactivation is normally complete.


1994 ◽  
Vol 71 (6) ◽  
pp. 2562-2565 ◽  
Author(s):  
A. M. Brown ◽  
P. C. Schwindt ◽  
W. E. Crill

1. These experiments tested the hypothesis that the differing voltage dependence of the transient (INa) and persistent (INaP) Na+ currents in neocortical neurons results from the state of inactivation of one type of Na+ channel rather than from the existence of different types of Na+ channels. This question was examined in acutely isolated pyramidal neurons from the sensorimotor cortex of rats by using papain to remove inactivation from INa and comparing the resulting activation curve with that of INaP. 2. In control cells, INaP activated at more negative potentials than INa. Inclusion of papain in the recording pipette removed inactivation from INa and caused the INa activation curve to be shifted leftward to the position of the curve for INaP measured in control cells. Papain greatly increased both INa amplitude and the time to reach peak INa during smaller depolarizations, whereas the difference between control and test currents was reduced during large depolarizations. 3. We conclude that differences in the voltage dependence of INa and INaP activation does not provide sufficient evidence that these currents flow through separate sets of Na+ channels. Instead, our results are consistent with the idea that INaP largely arises from a fraction of the transient Na+ channels that intermittently lose their inactivation.


2007 ◽  
Vol 97 (6) ◽  
pp. 3986-3996 ◽  
Author(s):  
Aryn H. Gittis ◽  
Sascha du Lac

Neural circuits are composed of diverse cell types, the firing properties of which reflect their intrinsic ionic currents. GABAergic and non-GABAergic neurons in the medial vestibular nuclei, identified in GIN and YFP-16 lines of transgenic mice, respectively, exhibit different firing properties in brain slices. The intrinsic ionic currents of these cell types were investigated in acutely dissociated neurons from 3- to 4-wk-old mice, where differences in spontaneous firing and action potential parameters observed in slice preparations are preserved. Both GIN and YFP-16 neurons express a combination of four major outward currents: Ca2+-dependent K+ currents ( IKCa), 1 mM TEA-sensitive delayed rectifier K+ currents ( I1TEA), 10 mM TEA-sensitive delayed rectifier K+ currents ( I10TEA), and A-type K+ currents ( IA). The balance of these currents varied across cells, with GIN neurons tending to express proportionately more IKCa and IA, and YFP-16 neurons tending to express proportionately more I1TEA and I10TEA. Correlations in charge densities suggested that several currents were coregulated. Variations in the kinetics and density of I1TEA could account for differences in repolarization rates observed both within and between cell types. These data indicate that diversity in the firing properties of GABAergic and non-GABAergic vestibular nucleus neurons arises from graded differences in the balance and kinetics of ionic currents.


1999 ◽  
Vol 07 (04) ◽  
pp. 491-512 ◽  
Author(s):  
DELILAH J. HUELSING ◽  
ANDREW E. POLLARD

Purkinje-to-ventricular (P-to-V) propagation and electrotonic modulation of repolarization at discrete Purkinje-ventricular junctions (PVJs) depend on differences in the ionic currents and tissue structure of the P network and the V myocardium. We used computer simulations to assess these membrane and tissue level contributions to P-V interactions. At the membrane level, we used the DiFrancesco-Noble membrane equations to model P ionic kinetics and the Luo-Rudy dynamic membrane equations to model V ionic kinetics. At the tissue level, we modeled the P network as a layer of branching cables, and we modeled a single myocardial sheet with an anisotropic layer of excitable cells. P-to-V propagation was enhanced at the tissue level when multiple wavefronts in the branching P network collided at the PVJ. At the membrane level, P-to-V propagation was enhanced by a reduced transient outward current (Ito) in the P layer. Repolarization at the PVJ was also modulated by both membrane and tissue level contributions. Under nominal conditions, action potential duration (APD) shortened in the P layer and prolonged in the V layer. However, when the V mass was reduced, both P and V cell APDs shortened during coupling with nominal Ito. Subsequent Ito inhibition restored coupling-induced prolongation of the V action potential in the reduced V mass. These results suggest that under physiologic conditions, both membrane and tissue level contributions to P-V interactions are important, while membrane level contributions become even more important under pathologies that reduce the difference in P and V tissue size, particularly in the setting of healed myocardial infarction.


2005 ◽  
Vol 93 (2) ◽  
pp. 723-733 ◽  
Author(s):  
Liston K. Purvis ◽  
Robert J. Butera

We have developed a single-compartment, electrophysiological, hypoglossal motoneuron (HM) model based primarily on experimental data from neonatal rat HMs. The model is able to reproduce the fine features of the HM action potential: the fast afterhyperpolarization, the afterdepolarization, and the medium-duration afterhyperpolarization (mAHP). The model also reproduces the repetitive firing properties seen in neonatal HMs and replicates the neuron's response to pharmacological experiments. The model was used to study the role of specific ionic currents in HM firing and how variations in the densities of these currents may account for age-dependent changes in excitability seen in HMs. By varying the density of a fast inactivating calcium current, the model alternates between accelerating and adapting firing patterns. Modeling the age-dependent increase in H current density accounts for the decrease in mAHP duration observed experimentally, but does not fully account for the decrease in input resistance. An increase in the density of the voltage-dependent potassium currents and the H current is required to account for the decrease in input resistance. These changes also account for the age-dependent decrease in action potential duration.


2003 ◽  
Vol 284 (1) ◽  
pp. H372-H384 ◽  
Author(s):  
Candido Cabo ◽  
Penelope A. Boyden

The density and kinetics of several ionic currents of cells isolated from the epicardial border zone of the infarcted heart (IZs) are markedly different from cells from the noninfarcted canine epicardium (NZs). To understand how these changes in channel function affect the action potential of the IZ cell as well as its response to antiarrhythmic agents, we developed a new ionic model of the action potential of a cell that survives in the infarct (IZ) and one of a normal epicardial cell (NZ) using formulations based on experimental measurements. The difference in action potential duration (APD) between NZ and IZ cells during steady-state stimulation (basic cycle length = 250 ms) was 6 ms (156 ms in NZ and 162 ms in IZ). However, because IZs exhibit postrepolarization refractoriness, the difference in the effective refractory period (ERP), calculated using a propagation model of a single fiber of 100 cells, was 43 ms (156 ms in NZ and 199 ms in IZ). Either an increase in L-type Ca2+ current (to simulate the effects of BAY Y5959) or a decrease of both or either delayed rectifier currents (e.g., to simulate the effects of azimilide, sotalol, and chromanol) had significant effects on NZ ERP. In contrast, the effects of these agents in IZs were minor, in agreement with measurements in the in situ canine infarcted heart. Therefore 1) because IZs exhibit postrepolarization refractoriness, conclusions drawn from APD measurements cannot be extrapolated directly to ERPs; 2) ionic currents that are the major determinants of APD and the ERP in NZs are less important in IZs; and 3) differential effects of either BAY Y5959 or azimilide in NZs versus IZs are predicted to decrease ERP dispersion and in so doing prevent initiation of arrhythmias in a substrate of inhomogeneous APD/ERPs.


1997 ◽  
Vol 78 (5) ◽  
pp. 2321-2335 ◽  
Author(s):  
Rachel E. Locke ◽  
Jeanne M. Nerbonne

Locke, Rachel E. and Jeanne M. Nerbonne. Role of voltage-gated K+ currents in mediating the regular-spiking phenotype of callosal-projecting rat visual cortical neurons. J. Neurophysiol. 78: 2321–2335, 1997. Whole cell current- and voltage-clamp recordings were combined to examine action potential waveforms, repetitive firing patterns, and the functional roles of voltage-gated K+ currents ( I A, I D, and I K) in identified callosal-projecting (CP) neurons from postnatal (day 7–13) rat primary visual cortex. Brief (1 ms) depolarizing current injections evoke single action potentials in CP neurons with mean ± SD ( n = 60) durations at 50 and 90% repolarization of 1.9 ± 0.5 and 5.5 ± 2.0 ms, respectively; action potential durations in individual cells are correlated inversely with peak outward current density. During prolonged threshold depolarizing current injections, CP neurons fire repetitively, and two distinct, noninterconverting “regular-spiking” firing patterns are evident: weakly adapting CP cells fire continuously, whereas strongly adapting CP cells cease firing during maintained depolarizing current injections. Action potential repolarization is faster and afterhyperpolarizations are more pronounced in strongly than in weakly adapting CP cells. In addition, input resistances are lower and plateau K+ current densities are higher in strongly than in weakly adapting CP cells. Functional studies reveal that blockade of I D reduces the latency to firing an action potential, and increases action potential durations at 50 and 90% repolarization. Blockade of I D also increases firing rates in weakly adapting cells and results in continuous firing of strongly adapting cells. After applications of millimolar concentrations of 4-aminopyridine to suppress I A (as well as block I D), action potential durations at 50 and 90% repolarization are further increased, and firing rates are accelerated over those observed when only I D is blocked. Using VClamp/CClamp and the voltage-clamp data in the preceding paper, mathematical descriptions of I A, I D, and I K are generated and a model of the electrophysiological properties of rat visual cortical CP neurons is developed. The model is used to simulate the firing properties of strongly adapting and weakly adapting CP cells and to explore the functional roles of I A, I D, and I K in shaping the waveforms of individual action potentials and controlling the repetitive firing properties of these cells.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1516
Author(s):  
Daniel Gratz ◽  
Alexander J Winkle ◽  
Seth H Weinberg ◽  
Thomas J Hund

The voltage-gated Na+ channel Nav1.5 is critical for normal cardiac myocyte excitability. Mathematical models have been widely used to study Nav1.5 function and link to a range of cardiac arrhythmias. There is growing appreciation for the importance of incorporating physiological heterogeneity observed even in a healthy population into mathematical models of the cardiac action potential. Here, we apply methods from Bayesian statistics to capture the variability in experimental measurements on human atrial Nav1.5 across experimental protocols and labs. This variability was used to define a physiological distribution for model parameters in a novel model formulation of Nav1.5, which was then incorporated into an existing human atrial action potential model. Model validation was performed by comparing the simulated distribution of action potential upstroke velocity measurements to experimental measurements from several different sources. Going forward, we hope to apply this approach to other major atrial ion channels to create a comprehensive model of the human atrial AP. We anticipate that such a model will be useful for understanding excitability at the population level, including variable drug response and penetrance of variants linked to inherited cardiac arrhythmia syndromes.


Sign in / Sign up

Export Citation Format

Share Document