Background:Methotrexate (MTX) is the most common anchor drug for rheumatoid arthritis (RA), but the risk of missing the opportunity for early effective treatment with alternative medications is substantial given the delayed onset of MTX action and 30-40% inadequate response rate. There is a compelling need to accurately predicting MTX response prior to treatment initiation, which allows for effectively identifying patients at RA onset who are likely to respond to MTX.Objectives:To test the ability of machine learning approaches with clinical and genomic biomarkers to predict MTX response with replications in independent samples.Methods:Age, sex, clinical, serological and genome-wide association study (GWAS) data on patients with early RA of European ancestry from 647 patients (336 recruited in United Kingdom [UK]; 307 recruited across Europe; 70% female; 72% rheumatoid factor [RF] positive; mean age 54 years; mean baseline Disease Activity Score with 28-joint count [DAS28] 5.65) of the PhArmacogenetics of Methotrexate in RA (PAMERA) consortium was used in this study. The genomics data comprised 160 genome-wide significant single nucleotide polymorphisms (SNPs) with p<1×10-5 associated with risk of RA and MTX metabolism. DAS28 score was available at baseline and 3-month follow-up visit. Response to MTX monotherapy at the dose of ≥15 mg/week was defined as good or moderate by the EULAR response criteria at 3 months’ follow up visit. Supervised machine-learning methods were trained with 5-repeats and 10-fold cross-validation using data from PAMERA’s 336 UK patients. Class imbalance (higher % of MTX responders) in training was accounted by using simulated minority oversampling technique. Prediction performance was validated in PAMERA’s 307 European patients (not used in training).Results:Age, sex, RF positivity and baseline DAS28 data predicted MTX response with 58% accuracy of UK and European patients (p = 0.7). However, supervised machine-learning methods that combined demographics, RF positivity, baseline DAS28 and genomic SNPs predicted EULAR response at 3 months with area under the receiver operating curve (AUC) of 0.83 (p = 0.051) in UK patients, and achieved prediction accuracies (fraction of correctly predicted outcomes) of 76.2% (p = 0.054) in the European patients, with sensitivity of 72% and specificity of 77%. The addition of genomic data improved the predictive accuracies of MTX response by 19% and achieved cross-site replication. Baseline DAS28 scores and following SNPs rs12446816, rs13385025, rs113798271, and rs2372536 were among the top predictors of MTX response.Conclusion:Pharmacogenomic biomarkers combined with DAS28 scores predicted MTX response in patients with early RA more reliably than using demographics and DAS28 scores alone. Using pharmacogenomics biomarkers for identification of MTX responders at early stages of RA may help to guide effective RA treatment choices, including timely escalation of RA therapies. Further studies on personalized prediction of response to MTX and other anti-rheumatic treatments are warranted to optimize control of RA disease and improve outcomes in patients with RA.Disclosure of Interests:Elena Myasoedova: None declared, Arjun Athreya: None declared, Cynthia S. Crowson Grant/research support from: Pfizer research grant, Richard Weinshilboum Shareholder of: co-founder and stockholder in OneOme, Liewei Wang: None declared, Eric Matteson Grant/research support from: Pfizer, Consultant of: Boehringer Ingelheim, Gilead, TympoBio, Arena Pharmaceuticals, Speakers bureau: Simply Speaking