scholarly journals Neural Correlates of Optimal Multisensory Decision Making

2018 ◽  
Author(s):  
Han Hou ◽  
Qihao Zheng ◽  
Yuchen Zhao ◽  
Alexandre Pouget ◽  
Yong Gu

AbstractPerceptual decisions are often based on multiple sensory inputs whose reliabilities rapidly vary over time, yet little is known about how our brain integrates these inputs to optimize behavior. Here we show multisensory evidence with time-varying reliability can be accumulated near optimally, in a Bayesian sense, by simply taking time-invariant linear combinations of neural activity across time and modalities, as long as the neural code for the sensory inputs is close to an invariant linear probabilistic population code (ilPPC). Recordings in the lateral intraparietal area (LIP) while macaques optimally performed a vestibular-visual multisensory decision-making task revealed that LIP population activity reflects an integration process consistent with the ilPPC theory. Moreover, LIP accumulates momentary evidence proportional to vestibular acceleration and visual velocity which are encoded in sensory areas with a close approximation to ilPPCs. Together, these results provide a remarkably simple and biologically plausible solution to optimal multisensory decision making.

Neuron ◽  
2019 ◽  
Vol 104 (5) ◽  
pp. 1010-1021.e10 ◽  
Author(s):  
Han Hou ◽  
Qihao Zheng ◽  
Yuchen Zhao ◽  
Alexandre Pouget ◽  
Yong Gu

2018 ◽  
Author(s):  
Ziqiang Wei ◽  
Hidehiko Inagaki ◽  
Nuo Li ◽  
Karel Svoboda ◽  
Shaul Druckmann

AbstractAnimals are not simple input-output machines. Their responses to even very similar stimuli are variable. A key, long-standing question in neuroscience is understanding the neural correlates of such behavioral variability. To reveal these correlates, behavior and neural population must be related to one another on single trials. Such analysis is challenging due to the dynamical nature of brain function (e.g. decision making), neuronal heterogeneity and signal to noise difficulties. By analyzing population recordings from mouse frontal cortex in perceptual decision-making tasks, we show that an analysis approach tailored to the coarse grain features of the dynamics was able to reveal previously unrecognized structure in the organization of population activity. This structure was similar on error and correct trials, suggesting what may be the underlying circuit mechanisms, was able to predict multiple aspects of behavioral variability and revealed long time-scale modulation of population activity.


2019 ◽  
Author(s):  
Dragan Rangelov ◽  
Jason B. Mattingley

AbstractThe ability to select and combine multiple sensory inputs in support of accurate decisions is a hallmark of adaptive behaviour. Attentional selection is often needed to prioritize stimuli that are task-relevant and to attenuate potentially distracting sources of sensory information. As most studies of perceptual decision-making to date have made use of task-relevant stimuli only, relatively little is known about how attention modulates decision making. To address this issue, we developed a novel ‘integrated’ decision-making task, in which participants judged the average direction of successive target motion signals while ignoring concurrent and spatially overlapping distractor motion signals. In two experiments that varied the role of attentional selection, we used linear regression to quantify the influence of target and distractor stimuli on behaviour. Using electroencephalography, we characterised the neural correlates of decision making, attentional selection and feature-specific responses to target and distractor signals. While targets strongly influenced perceptual decisions and associated neural activity, we also found that concurrent and spatially coincident distractors exerted a measurable bias on both behaviour and brain activity. Our findings suggest that attention operates as a real-time but imperfect filter during perceptual decision-making by dynamically modulating the contributions of task-relevant and irrelevant sensory inputs.


2009 ◽  
Vol 71 (3) ◽  
pp. 354-361 ◽  
Author(s):  
Tiffany M.Y. Lee ◽  
Li-guo Guo ◽  
Hong-zhi Shi ◽  
Yong-zhi Li ◽  
Yue-jia Luo ◽  
...  

2012 ◽  
Vol 461 ◽  
pp. 763-767
Author(s):  
Li Fu Wang ◽  
Zhi Kong ◽  
Xin Gang Wang ◽  
Zhao Xia Wu

In this paper, following the state-feedback stabilization for time-varying systems proposed by Wolovich, a controller is designed for the overhead cranes with a linearized parameter-varying model. The resulting closed-loop system is equivalent, via a Lyapunov transformation, to a stable time-invariant system of assigned eigenvalues. The simulation results show the validity of this method.


2014 ◽  
Vol 369 (1641) ◽  
pp. 20130211 ◽  
Author(s):  
Randolph Blake ◽  
Jan Brascamp ◽  
David J. Heeger

This essay critically examines the extent to which binocular rivalry can provide important clues about the neural correlates of conscious visual perception. Our ideas are presented within the framework of four questions about the use of rivalry for this purpose: (i) what constitutes an adequate comparison condition for gauging rivalry's impact on awareness, (ii) how can one distinguish abolished awareness from inattention, (iii) when one obtains unequivocal evidence for a causal link between a fluctuating measure of neural activity and fluctuating perceptual states during rivalry, will it generalize to other stimulus conditions and perceptual phenomena and (iv) does such evidence necessarily indicate that this neural activity constitutes a neural correlate of consciousness? While arriving at sceptical answers to these four questions, the essay nonetheless offers some ideas about how a more nuanced utilization of binocular rivalry may still provide fundamental insights about neural dynamics, and glimpses of at least some of the ingredients comprising neural correlates of consciousness, including those involved in perceptual decision-making.


2018 ◽  
Vol 38 (8) ◽  
pp. 904-916 ◽  
Author(s):  
Aasthaa Bansal ◽  
Patrick J. Heagerty

Many medical decisions involve the use of dynamic information collected on individual patients toward predicting likely transitions in their future health status. If accurate predictions are developed, then a prognostic model can identify patients at greatest risk for future adverse events and may be used clinically to define populations appropriate for targeted intervention. In practice, a prognostic model is often used to guide decisions at multiple time points over the course of disease, and classification performance (i.e., sensitivity and specificity) for distinguishing high-risk v. low-risk individuals may vary over time as an individual’s disease status and prognostic information change. In this tutorial, we detail contemporary statistical methods that can characterize the time-varying accuracy of prognostic survival models when used for dynamic decision making. Although statistical methods for evaluating prognostic models with simple binary outcomes are well established, methods appropriate for survival outcomes are less well known and require time-dependent extensions of sensitivity and specificity to fully characterize longitudinal biomarkers or models. The methods we review are particularly important in that they allow for appropriate handling of censored outcomes commonly encountered with event time data. We highlight the importance of determining whether clinical interest is in predicting cumulative (or prevalent) cases over a fixed future time interval v. predicting incident cases over a range of follow-up times and whether patient information is static or updated over time. We discuss implementation of time-dependent receiver operating characteristic approaches using relevant R statistical software packages. The statistical summaries are illustrated using a liver prognostic model to guide transplantation in primary biliary cirrhosis.


Author(s):  
Robert Peruzzi

Forensic analysis in this case involves the design of a communication system intended for use in Quick Service Restaurant (QSR) drive-thru lanes. This paper provides an overview of QSR communication system components and operation and introduces communication systems and channels. This paper provides an overview of non-linear, time-varying system design as contrasted with linear, time-invariant systems and discusses best design practices. It also provides the details of how audio quality was defined and compared for two potentially competing systems. Conclusions include that one of the systems was clearly inferior to the other — mainly due to not following design techniques that were available at the time of the project.


Sign in / Sign up

Export Citation Format

Share Document