scholarly journals Metabolic Control Analysis of Exponential Growth and Product Formation

2018 ◽  
Author(s):  
David Andrew Fell

Metabolic Control Analysis defines the relationships between the change in activity of an enzyme and the resulting impacts on metabolic fluxes and metabolite concentrations at steady state. In many biotechnological applications of metabolic engineering, however, the goal is to alter the product yield. In this case, although metabolism may be at a pseudo-steady state, the amount of biomass catalysing the metabolism can be growing exponentially. Here, expressions are derived that relate the change in activity of an enzyme and its flux control coefficient to the change in yield from an exponentially growing system. Conversely, the expressions allow estimation of an enzyme's flux control coefficient over the pathway generating the product from measurements of the changes in enzyme activity and yield.

1997 ◽  
Vol 323 (1) ◽  
pp. 119-122 ◽  
Author(s):  
Tracey D. SPURWAY ◽  
H. Stanley A. SHERRATT ◽  
Christopher I. POGSON ◽  
Loranne AGIUS

Two important factors that determine the flux of hepatic β-oxidation of long-chain fatty acids are the availability of fatty acid and the activity of carnitine palmitoyltransferase I (CPT I). Using Metabolic Control Analysis, the flux control coefficient of CPT I in rat hepatocyte monolayers was determined by titration with 2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate (Etomoxir), which is converted to Etomoxir-CoA, an irreversible inhibitor of CPT I. We measured CPT I activity and flux through β-oxidation at 0.2 mM and 1.0 mM palmitate to simulate substrate concentrations in fed and fasted states. Rates of β-oxidation were 4.5-fold higher at 1.0 mM palmitate compared with 0.2 mM palmitate. Flux control coefficients of CPT I, estimated by two independent methods, were similar: 0.67 and 0.79 for 0.2 mM palmitate, and 0.68 and 0.77 for 1 mM palmitate. It is concluded that the regulatory potential of CPT I is similar at low and high physiological concentrations of palmitate.


2019 ◽  
Vol 26 (36) ◽  
pp. 6652-6671 ◽  
Author(s):  
Emma Saavedra ◽  
Zabdi González-Chávez ◽  
Rafael Moreno-Sánchez ◽  
Paul A.M. Michels

In the search for therapeutic targets in the intermediary metabolism of trypanosomatids the gene essentiality criterion as determined by using knock-out and knock-down genetic strategies is commonly applied. As most of the evaluated enzymes/transporters have turned out to be essential for parasite survival, additional criteria and approaches are clearly required for suitable drug target prioritization. The fundamentals of Metabolic Control Analysis (MCA; an approach in the study of control and regulation of metabolism) and kinetic modeling of metabolic pathways (a bottom-up systems biology approach) allow quantification of the degree of control that each enzyme exerts on the pathway flux (flux control coefficient) and metabolic intermediate concentrations (concentration control coefficient). MCA studies have demonstrated that metabolic pathways usually have two or three enzymes with the highest control of flux; their inhibition has more negative effects on the pathway function than inhibition of enzymes exerting low flux control. Therefore, the enzymes with the highest pathway control are the most convenient targets for therapeutic intervention. In this review, the fundamentals of MCA as well as experimental strategies to determine the flux control coefficients and metabolic modeling are analyzed. MCA and kinetic modeling have been applied to trypanothione metabolism in Trypanosoma cruzi and the model predictions subsequently validated in vivo. The results showed that three out of ten enzyme reactions analyzed in the T. cruzi anti-oxidant metabolism were the most controlling enzymes. Hence, MCA and metabolic modeling allow a further step in target prioritization for drug development against trypanosomatids and other parasites.


1997 ◽  
Vol 321 (1) ◽  
pp. 133-138 ◽  
Author(s):  
Jens NIELSEN

Metabolic control analysis is a powerful technique for the evaluation of flux control within biochemical pathways. Its foundation is the elasticity coefficients and the flux control coefficients (FCCs). On the basis of a thermokinetic description of reaction rates it is here shown that the elasticity coefficients can be calculated directly from the pool levels of metabolites at steady state. The only requirement is that one thermodynamic parameter be known, namely the reaction affinity at the intercept of the tangent in the inflection point of the curve of reaction rate against reaction affinity. This parameter can often be determined from experiments in vitro. The methodology is applicable only to the analysis of simple two-step pathways, but in many cases larger pathways can be lumped into two overall conversions. In cases where this cannot be done it is necessary to apply an extension of the thermokinetic description of reaction rates to include the influence of effectors. Here the reaction rate is written as a linear function of the logarithm of the metabolite concentrations. With this type of rate function it is shown that the approach of Delgado and Liao [Biochem. J. (1992) 282, 919–927] can be much more widely applied, although it was originally based on linearized kinetics. The methodology of determining elasticity coefficients directly from pool levels is illustrated with an analysis of the first two steps of the biosynthetic pathway of penicillin. The results compare well with previous findings based on a kinetic analysis.


2018 ◽  
Author(s):  
Ziwei Dai ◽  
Jason W. Locasale

AbstractNutrition and metabolism are fundamental to cellular function in physiological and pathological contexts. Metabolic activity (i.e. rates, flow, or most commonly referred to as flux) is constrained by thermodynamics and regulated by the activity of enzymes. The general principles that relate biological and physical variables to metabolic control are incompletely understood. Using metabolic control analysis in several representative topological structures of metabolic pathways as models, we derive exact results and conduct computer simulations that define relationships between thermodynamics, enzyme activity, and flux control. We confirm that metabolic pathways that are very far from equilibrium are controlled by the activity of upstream enzymes. However, in general, metabolic pathways have a more adaptable pattern of regulation, controlled minimally by thermodynamics and not necessarily by the specific enzyme that generates the given reaction. These findings show how the control of metabolic pathways, which are rarely very far from equilibrium, is largely set by the overall flux through a pathway rather than by the enzyme which generates the flux or by thermodynamics.


Author(s):  
Mamta Sagar ◽  
Pramod Wasudev Ramteke ◽  
Ravindra Nath Katiyar ◽  
Shameem Ahmad

Metabolic Control Analysis provides a quantitative description of concentration dynamics with the change in system parameters. A metabolic Control Analysis aids determination of the threshold value of metabolites involved in a reaction and also helps to understand the role of various parameters in a reaction. In this work, a metabolic model of a Naringenine chalcone biosynthetic reaction is defined and a time series simulation was carried out based on the law of Mass action. Initial concentration of p-Coumaroyl-CoA and Malonyl-CoA were taken 5.0*10-2 mM 2.2*10-3 mM respectively. This concentration was then simulated over time for 10 seconds to find the steady state. Final concentration of  Naringenine chalcone,CO2, and CoA becomes 8.593946e-004 mM after 5.00 second of simulation at reaction constant 6.587753e-005 mM*ml/s. Steady state solution shows that Initial concentration of Naringenine chalcone was 2.199777e-003 mM which is eventually converted into 2.785128e+013 seconds half-life concentration of product at 7.898e-017 mM/s rate and  0.000000e+000 mM*ml/s  rate constant. Phenylpropanoid pathway was analysed to predict all the enzymes that can maximise and minimise the concentration of  Malonyl-CoA and P-Coumaroyl-CoA which leads to flavonoid biosynthesis. In the Phenylpropanoid pathway four enzymes Phenylalanine/tyrosine ammonia lyase, trans-cinnamate 4-monooxygenase, Phenylalanine ammonia lyase, maximise the flavonoid biosynthesis. This analysis shows that other enzymes minimise the concentrations of  Malonyl-CoA and P-coumaroyl-CoA, these are Cinnamoyl Co A reductase, shikimate O hydroxyl transferase HCT), Oxidoreductase. Furthermore, Protein domain analysis of chalcone synthase mutants ( 1jwx Medicago sativa and 4yjy from Oryza sativa) was done to predict structural features to understand reaction mechanism and structure-based engineering to maximise flavonoid biosynthesis. Natural sequence variation CHS G256A, G256V, G256L, and G256F mutants of residue 256 reduce the size of the active site cavity but quick diversification of product specificity occurs. The threshold concentration of Malonyl-CoA and P-coumaroyl-CoA were predicted, maximisation of this concentration leads to enhanced flavonoid biosynthesis. Inhibition of few enzymes may also maximise the flavonoid biosynthesis if appropriate inhibitors are used and a constant supply of Malonyl-CoA and P-Coumaroyl-CoA is maintained using activator molecules. Chalcone synthase Mutants diversify product specificity that occurs without loss of catalytic activity and any conformational changes.


1990 ◽  
Vol 269 (1) ◽  
pp. 255-259 ◽  
Author(s):  
J S Easterby

A theory is developed that integrates approaches to the analysis of pathway transient response and metabolic control analysis. A Temporal Control Coefficient is defined that is a measure of the system's transient response to modulation of enzyme activity or concentration. The approach allows for the analysis of the establishment of a steady state from rest, of the system's ‘agility’ of response to minor perturbations of a pre-existing steady state and of the macroscopic transition between steady states. In the last-mentioned case it is shown that, like the transient time itself, the control of transient response retains the property of independence from the mechanism of the transition. In consequence, the Temporal Control Coefficient can be defined in terms of the control properties of the initial and final states alone without reference to the mechanism of transition. A summation property is shown to apply to the Temporal Control Coefficients in each case. Connectivity relationships between elasticities and Temporal Control Coefficients are also established.


FEBS Letters ◽  
2002 ◽  
Vol 517 (1-3) ◽  
pp. 245-250 ◽  
Author(s):  
Achim M. Vogt ◽  
Holger Nef ◽  
Jutta Schaper ◽  
Mark Poolman ◽  
David A. Fell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document