Metabolic control analysis of l -phenylalanine production from glycerol with engineered E. coli using data from short-term steady-state perturbation experiments

2017 ◽  
Vol 126 ◽  
pp. 86-100 ◽  
Author(s):  
Michael Weiner ◽  
Julia Tröndle ◽  
Christoph Albermann ◽  
Georg A. Sprenger ◽  
Dirk Weuster-Botz
2020 ◽  
Vol 307 ◽  
pp. 15-28 ◽  
Author(s):  
Julia Tröndle ◽  
Kristin Schoppel ◽  
Arne Bleidt ◽  
Natalia Trachtmann ◽  
Georg A. Sprenger ◽  
...  

Author(s):  
Mamta Sagar ◽  
Pramod Wasudev Ramteke ◽  
Ravindra Nath Katiyar ◽  
Shameem Ahmad

Metabolic Control Analysis provides a quantitative description of concentration dynamics with the change in system parameters. A metabolic Control Analysis aids determination of the threshold value of metabolites involved in a reaction and also helps to understand the role of various parameters in a reaction. In this work, a metabolic model of a Naringenine chalcone biosynthetic reaction is defined and a time series simulation was carried out based on the law of Mass action. Initial concentration of p-Coumaroyl-CoA and Malonyl-CoA were taken 5.0*10-2 mM 2.2*10-3 mM respectively. This concentration was then simulated over time for 10 seconds to find the steady state. Final concentration of  Naringenine chalcone,CO2, and CoA becomes 8.593946e-004 mM after 5.00 second of simulation at reaction constant 6.587753e-005 mM*ml/s. Steady state solution shows that Initial concentration of Naringenine chalcone was 2.199777e-003 mM which is eventually converted into 2.785128e+013 seconds half-life concentration of product at 7.898e-017 mM/s rate and  0.000000e+000 mM*ml/s  rate constant. Phenylpropanoid pathway was analysed to predict all the enzymes that can maximise and minimise the concentration of  Malonyl-CoA and P-Coumaroyl-CoA which leads to flavonoid biosynthesis. In the Phenylpropanoid pathway four enzymes Phenylalanine/tyrosine ammonia lyase, trans-cinnamate 4-monooxygenase, Phenylalanine ammonia lyase, maximise the flavonoid biosynthesis. This analysis shows that other enzymes minimise the concentrations of  Malonyl-CoA and P-coumaroyl-CoA, these are Cinnamoyl Co A reductase, shikimate O hydroxyl transferase HCT), Oxidoreductase. Furthermore, Protein domain analysis of chalcone synthase mutants ( 1jwx Medicago sativa and 4yjy from Oryza sativa) was done to predict structural features to understand reaction mechanism and structure-based engineering to maximise flavonoid biosynthesis. Natural sequence variation CHS G256A, G256V, G256L, and G256F mutants of residue 256 reduce the size of the active site cavity but quick diversification of product specificity occurs. The threshold concentration of Malonyl-CoA and P-coumaroyl-CoA were predicted, maximisation of this concentration leads to enhanced flavonoid biosynthesis. Inhibition of few enzymes may also maximise the flavonoid biosynthesis if appropriate inhibitors are used and a constant supply of Malonyl-CoA and P-Coumaroyl-CoA is maintained using activator molecules. Chalcone synthase Mutants diversify product specificity that occurs without loss of catalytic activity and any conformational changes.


1994 ◽  
Vol 297 (1) ◽  
pp. 115-122 ◽  
Author(s):  
G C Brown

Metabolic control analysis is adapted as a method for describing and analysing the control by organs in the body over the fluxes and concentrations of substances carried in the blood. This physiological control analysis can most usefully be applied to substances with fluxes into and out of organs that are uniquely dependent only on their plasma concentrations. The organ flux of a substance is defined as the steady-state net flux of a substance into a particular organ. The organ flux control coefficients quantify the extent to which a particular organ controls the flux of a substance into the same or another particular organ. Organ concentration control coefficients quantify the extent to which an organ controls the steady-state concentration of a substance in the blood. The control coefficients are additive and obey summation, connectivity and branching theorems. Thus the control coefficients can be determined experimentally by measuring the sensitivities (elasticities) of organ fluxes to the plasma concentration of the substance. As an example of the application of these concepts, the control of ketone-body metabolism in vivo is analysed using data from the literature.


2018 ◽  
Author(s):  
David Andrew Fell

Metabolic Control Analysis defines the relationships between the change in activity of an enzyme and the resulting impacts on metabolic fluxes and metabolite concentrations at steady state. In many biotechnological applications of metabolic engineering, however, the goal is to alter the product yield. In this case, although metabolism may be at a pseudo-steady state, the amount of biomass catalysing the metabolism can be growing exponentially. Here, expressions are derived that relate the change in activity of an enzyme and its flux control coefficient to the change in yield from an exponentially growing system. Conversely, the expressions allow estimation of an enzyme's flux control coefficient over the pathway generating the product from measurements of the changes in enzyme activity and yield.


Author(s):  
Sophia Tsouka ◽  
Meric Ataman ◽  
Tuure Hameri ◽  
Ljubisa Miskovic ◽  
Vassily Hatzimanikatis

1993 ◽  
Vol 9 (3) ◽  
pp. 221-233 ◽  
Author(s):  
James C. Liao ◽  
Javier Delgado

Sign in / Sign up

Export Citation Format

Share Document