scholarly journals Unidirectional response to bidirectional selection on body size. I. Phenotypic, life history and endocrine response

2018 ◽  
Author(s):  
Clémentine Renneville ◽  
Alexis Millot ◽  
Simon Agostini ◽  
David Carmignac ◽  
Gersende Maugars ◽  
...  

ABSTRACTAnthropogenic perturbations such as harvesting often select against a large body size and are predicted to induce rapid evolution towards smaller body sizes and earlier maturation. However, body-size evolvability and, hence, adaptability to anthropogenic perturbations remain seldom evaluated in wild populations. Here, we use a laboratory experiment over 6 generations to measure the ability of wild-caught medaka fish (Oryzias latipes) to evolve in response to bidirectional size-dependent selection mimicking opposite harvest regimes. Specifically, we imposed selection against a small body size (Large line), against a large body size (Small line) or random selection (Control line), and measured correlated responses across multiple phenotypic, life-history and endocrine traits. As expected, the Large line evolved faster somatic growth and delayed maturation, but also evolved smaller body sizes at hatch, with no change in average levels of pituitary gene expressions of luteinizing, folliclestimulating or growth (GH) hormones. In contrast, the Small medaka line was unable to evolve smaller body sizes or earlier maturation, but evolved smaller body sizes at hatch and showed marginally-significant signs of increased reproductive investment, including larger egg sizes and elevated pituitary GH production. Natural selection on medaka body size was too weak to significantly hinder the effect of artificial selection, indicating that the asymmetric body-size response to size-dependent selection reflected an asymmetry in body-size evolvability. Our results show that trait evolvability may be contingent upon the direction of selection, and that a detailed knowledge of trait evolutionary potential is needed to forecast population response to anthropogenic change.

2009 ◽  
Vol 30 (2) ◽  
pp. 233-243 ◽  
Author(s):  
Gilson Rivas Fuenmayor ◽  
Paulo Passos ◽  
Cesar Barrio-Amorós

AbstractTwo new species of Atractus are described from Venezuela uplands and highlands on two northern Andean cordilleras. Atractus acheronius, known only from Sierra de Perijá, can be distinguished from congeners by having 17 dorsal scale rows, presence of preocular scales, seven upper and lower labials, seven maxillary teeth, 166 ventrals in the single female, 23 subcaudals, dorsum brown with small dark brown dots, large body size, huge body diameter, and small tail size. Atractus multidentatus, known only from north versant of the Cordillera de Mérida, can be distinguished from congeners by having 17 dorsal scale rows, eight upper and lower labials, 18 maxillary teeth, 153 ventrals in the single female, nine subcaudals, dorsum reddish brown with five longitudinal dark brown stripes, small body size, small body diameter, and small tail size. Additionally, a discussion concerning the species description of Atractus based on unique specimens is provided.


Author(s):  
Helen J. Read ◽  
Henrik Enghoff

A large sample of Siphonophoridae from Brazil was studied; two morphological groups could be distinguished. Here species considered to be from the genus Columbianum Verhoeff, 1941 are examined in detail. The genus is known from Central and South America (Guatemala, Panama, Honduras, Guiana, Colombia, Peru and Brazil) and is characterised by a clear demarcation between head and rostrum in combination with long antennae, clearly surpassing the tip of the rostrum. A list of previously described species considered to belong to the genus is given; three new species are described: C. major sp. nov. has a large body size and a small head, C. nahvalr sp. nov. has a particularly pronounced domed head and a more castellated appearance to the body, C. adisi sp. nov. has a small body size and a very characteristic hind margin to the pleurites. Variation in the state of preservation of specimens hinders a diagnosis, but the examination of the accessory claw and details of the metazonital limbus and pleurite edges are helpful. Unusually for Diplopoda, the male gonopods are not very useful for identification. Ecological comments are given for each new species, one of which, C. adisi sp. nov., is from the seasonally flooded forest and appears to avoid inundation by climbing trees.


2016 ◽  
Vol 283 (1833) ◽  
pp. 20160816 ◽  
Author(s):  
Rowan Trebilco ◽  
Nicholas K. Dulvy ◽  
Sean C. Anderson ◽  
Anne K. Salomon

Theory predicts that bottom-heavy biomass pyramids or ‘stacks’ should predominate in real-world communities if trophic-level increases with body size (mean predator-to-prey mass ratio (PPMR) more than 1). However, recent research suggests that inverted biomass pyramids (IBPs) characterize relatively pristine reef fish communities. Here, we estimated the slope of a kelp forest fish community biomass spectrum from underwater visual surveys. The observed biomass spectrum slope is strongly positive, reflecting an IBP. This is incongruous with theory because this steep positive slope would only be expected if trophic position decreased with increasing body size (consumer-to-resource mass ratio, less than 1). We then used δ 15 N signatures of fish muscle tissue to quantify the relationship between trophic position and body size and instead detected strong evidence for the opposite, with PPMR ≈ 1650 (50% credible interval 280–12 000). The natural history of kelp forest reef fishes suggests that this paradox could arise from energetic subsidies in the form of movement of mobile consumers across habitats, and from seasonally pulsed production inputs at small body sizes. There were four to five times more biomass at large body sizes (1–2 kg) than would be expected in a closed steady-state community providing a measure of the magnitude of subsidies.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8810
Author(s):  
J. Keaton Wilson ◽  
Laura Ruiz ◽  
Goggy Davidowitz

Organismal body size is an important biological trait that has broad impacts across scales of biological organization, from cells to ecosystems. Size is also deeply embedded in life history theory, as the size of an individual is one factor that governs the amount of available resources an individual is able to allocate to different structures and systems. A large body of work examining resource allocation across body sizes (allometry) has demonstrated patterns of allocation to different organismal systems and morphologies, and extrapolated rules governing biological structure and organization. However, the full scope of evolutionary and ecological ramifications of these patterns have yet to be realized. Here, we show that density-dependent larval competition in a natural population of insect parasitoids (Drino rhoeo: Tachinidae) results in a wide range of body sizes (largest flies are more than six times larger (by mass) than the smallest flies). We describe strong patterns of trade-offs between different body structures linked to dispersal and reproduction that point to life history strategies that differ between both males and females and individuals of different sizes. By better understanding the mechanisms that generate natural variation in body size and subsequent effects on the evolution of life history strategies, we gain better insight into the evolutionary and ecological impacts of insect parasitoids in tri-trophic systems.


2018 ◽  
Vol 5 (7) ◽  
pp. 180707 ◽  
Author(s):  
Tomoya Dobashi ◽  
Midori Iida ◽  
Kazuhiro Takemoto

Body-size relationships between predators and their prey are important in ecological studies because they reflect the structure and function of food webs. Inspired by studies on the impact of global warming on food webs, the effects of temperature on body-size relationships have been widely investigated; however, the impact of environmental factors on body-size relationships has not been fully evaluated because climate warming affects various ocean environments. Thus, here, we comprehensively investigated the effects of ocean environments and predator–prey body-size relationships by integrating a large-scale dataset of predator–prey body-size relationships in marine food webs with global oceanographic data. We showed that various oceanographic parameters influence prey size selection. In particular, oxygen concentration, primary production and salinity, in addition to temperature, significantly alter body-size relationships. Furthermore, we demonstrated that variability (seasonality) of ocean environments significantly affects body-size relationships. The effects of ocean environments on body-size relationships were generally remarkable for small body sizes, but were also significant for large body sizes and were relatively weak for intermediate body sizes, in the cases of temperature seasonality, oxygen concentration and salinity variability. These findings break down the complex effects of ocean environments on body-size relationships, advancing our understanding of how ocean environments influence the structure and functioning of food webs.


2019 ◽  
Vol 6 (10) ◽  
pp. 190258 ◽  
Author(s):  
Candice M. Stefanic ◽  
Sterling J. Nesbitt

Living members of Archosauria, the reptile clade containing Crocodylia and Aves, have a wide range of skeletal morphologies, ecologies and body size. The range of body size greatly increases when extinct archosaurs are included, because extinct Archosauria includes the largest members of any terrestrial vertebrate group (e.g. 70-tonne titanosaurs, 20-tonne theropods). Archosaurs evolved various skeletal adaptations for large body size, but these adaptations varied among clades and did not always appear consistently with body size or ecology. Modification of intervertebral articulations, specifically the presence of a hyposphene-hypantrum articulation between trunk vertebrae, occurs in a variety of extinct archosaurs (e.g. non-avian dinosaurs, pseudosuchians). We surveyed the phylogenetic distribution of the hyposphene-hypantrum to test its relationship with body size. We found convergent evolution among large-bodied clades, except when the clade evolved an alternative mechanism for vertebral bracing. For example, some extinct lineages that lack the hyposphene-hypantrum articulation (e.g. ornithischians) have ossified tendons that braced their vertebral column. Ossified tendons are present even in small taxa and in small-bodied juveniles, but large-bodied taxa with ossified tendons reached those body sizes without evolving the hyposphene-hypantrum articulation. The hyposphene-hypantrum was permanently lost in extinct crownward members of both major archosaur lineages (i.e. Crocodylia and Aves) as they underwent phyletic size decrease, changes in vertebral morphology and shifts in ecology.


2019 ◽  
Author(s):  
Ricardo Wilches ◽  
William H. Beluch ◽  
Ellen McConnell ◽  
Diethard Tautz ◽  
Yingguang Frank Chan

AbstractMost traits in nature involve the collective action of many genes. Traits that evolve repeatedly are particularly revealing about how selection may act on traits. In mice, large body size has evolved repeatedly on islands and under artificial selection in the laboratory. Identifying the loci and genes involved in this process may shed light on the evolution of complex, polygenic traits. Here, we have mapped the genetic basis of body size variation by making a genetic cross between mice from the Faroe Islands, which are among the largest and most distinctive populations of mice in the world, and a laboratory mouse strain selected for small body size, SM/J. Using this F2 intercross of 841 animals, we have identified 102 loci controlling various aspects of body size, weight and growth hormone levels. By comparing against other studies, including the use of a joint meta-analysis, we found that the loci involved in the evolution of large size in the Faroese mice were largely independent from those of a different island population or other laboratory strains. We conclude that colonization bottleneck, historical hybridization, or the redundancy between multiple loci have resulted in the Faroese mice achieving an outwardly similar phenotype through a distinct evolutionary path.


1984 ◽  
Vol 44 (1) ◽  
pp. 47-72 ◽  
Author(s):  
D. S. Falconer

SummaryPuberty was studied in mice of the ninth selected generation of the Q-strain. There were 6 replicate lines selected for large body size (6-week weight), 6 replicates selected for small size and 6 replicate unselected controls. Female puberty was assessed by the opening of the vagina and male puberty by the first copulation plug. The sexes differed in the mean age at puberty, males being older by 13 days in the large, 4 days in the control and 8 days in the small lines. The sexes differed also in the way size affected puberty. In males the large and small lines reached puberty at the same age and both were older than the controls. In females the large lines on average were heavier and younger at puberty than the controls, and the small lines were lighter and older than the controls, though not significantly older. The replicates within each size-group, however, reached puberty at about the same weight, irrespective of their differences in growth rate. Thus, the differences of growth between the large, control and small groups affected both the weight and the age of females at puberty, but the differences of growth between the replicate lines within each size affected only the age at puberty. No explanation was found for this inconsistency between size-groups and replicates. Several lines of evidence led to the conclusion that in females puberty is partly or mainly weight-dependent, whereas in males it is almost wholly age-dependent.


2019 ◽  
Author(s):  
Alix Bouffet-Halle ◽  
Jacques Mériguet ◽  
David Carmignac ◽  
Simon Agostini ◽  
Alexis Millot ◽  
...  

ABSTRACTRapid life-history changes caused by size-selective harvesting are often interpreted as a response to direct harvest selection against a large body size. However, similar trait changes may result from a harvest-induced relaxation of natural selection for a large body size via density-dependent selection. Here, we show evidence of such density-dependent selection favouring large-bodied individuals at high population densities, in replicated pond populations of medaka fish. Harvesting, in contrast, selected medaka directly against large-bodied medaka and, in parallel, decreased medaka population densities. Five years of harvesting were enough for harvested and unharvested medaka populations to inherit the classically-predicted trait differences, whereby harvested medaka grew slower and matured earlier than unharvested medaka. We demonstrate that this life-history divergence was not driven by direct harvest selection for a smaller body size in harvested populations, but by density-dependent natural selection for a larger body size in unharvested populations.


Sign in / Sign up

Export Citation Format

Share Document