scholarly journals The evolution and role of the hyposphene-hypantrum articulation in Archosauria: phylogeny, size and/or mechanics?

2019 ◽  
Vol 6 (10) ◽  
pp. 190258 ◽  
Author(s):  
Candice M. Stefanic ◽  
Sterling J. Nesbitt

Living members of Archosauria, the reptile clade containing Crocodylia and Aves, have a wide range of skeletal morphologies, ecologies and body size. The range of body size greatly increases when extinct archosaurs are included, because extinct Archosauria includes the largest members of any terrestrial vertebrate group (e.g. 70-tonne titanosaurs, 20-tonne theropods). Archosaurs evolved various skeletal adaptations for large body size, but these adaptations varied among clades and did not always appear consistently with body size or ecology. Modification of intervertebral articulations, specifically the presence of a hyposphene-hypantrum articulation between trunk vertebrae, occurs in a variety of extinct archosaurs (e.g. non-avian dinosaurs, pseudosuchians). We surveyed the phylogenetic distribution of the hyposphene-hypantrum to test its relationship with body size. We found convergent evolution among large-bodied clades, except when the clade evolved an alternative mechanism for vertebral bracing. For example, some extinct lineages that lack the hyposphene-hypantrum articulation (e.g. ornithischians) have ossified tendons that braced their vertebral column. Ossified tendons are present even in small taxa and in small-bodied juveniles, but large-bodied taxa with ossified tendons reached those body sizes without evolving the hyposphene-hypantrum articulation. The hyposphene-hypantrum was permanently lost in extinct crownward members of both major archosaur lineages (i.e. Crocodylia and Aves) as they underwent phyletic size decrease, changes in vertebral morphology and shifts in ecology.

2009 ◽  
Vol 6 (2) ◽  
pp. 265-269 ◽  
Author(s):  
James C. Lamsdell ◽  
Simon J. Braddy

Gigantism is widespread among Palaeozoic arthropods, yet causal mechanisms, particularly the role of (abiotic) environmental factors versus (biotic) competition, remain unknown. The eurypterids (Arthropoda: Chelicerata) include the largest arthropods; gigantic predatory pterygotids (Eurypterina) during the Siluro-Devonian and bizarre sweep-feeding hibbertopterids (Stylonurina) from the Carboniferous to end-Permian. Analysis of family-level originations and extinctions among eurypterids and Palaeozoic vertebrates show that the diversity of Eurypterina waned during the Devonian, while the Placodermi radiated, yet Stylonurina remained relatively unaffected; adopting a sweep-feeding strategy they maintained their large body size by avoiding competition, and persisted throughout the Late Palaeozoic while the predatory nektonic Eurypterina (including the giant pterygotids) declined during the Devonian, possibly out-competed by other predators including jawed vertebrates.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8810
Author(s):  
J. Keaton Wilson ◽  
Laura Ruiz ◽  
Goggy Davidowitz

Organismal body size is an important biological trait that has broad impacts across scales of biological organization, from cells to ecosystems. Size is also deeply embedded in life history theory, as the size of an individual is one factor that governs the amount of available resources an individual is able to allocate to different structures and systems. A large body of work examining resource allocation across body sizes (allometry) has demonstrated patterns of allocation to different organismal systems and morphologies, and extrapolated rules governing biological structure and organization. However, the full scope of evolutionary and ecological ramifications of these patterns have yet to be realized. Here, we show that density-dependent larval competition in a natural population of insect parasitoids (Drino rhoeo: Tachinidae) results in a wide range of body sizes (largest flies are more than six times larger (by mass) than the smallest flies). We describe strong patterns of trade-offs between different body structures linked to dispersal and reproduction that point to life history strategies that differ between both males and females and individuals of different sizes. By better understanding the mechanisms that generate natural variation in body size and subsequent effects on the evolution of life history strategies, we gain better insight into the evolutionary and ecological impacts of insect parasitoids in tri-trophic systems.


2018 ◽  
Author(s):  
Clémentine Renneville ◽  
Alexis Millot ◽  
Simon Agostini ◽  
David Carmignac ◽  
Gersende Maugars ◽  
...  

ABSTRACTAnthropogenic perturbations such as harvesting often select against a large body size and are predicted to induce rapid evolution towards smaller body sizes and earlier maturation. However, body-size evolvability and, hence, adaptability to anthropogenic perturbations remain seldom evaluated in wild populations. Here, we use a laboratory experiment over 6 generations to measure the ability of wild-caught medaka fish (Oryzias latipes) to evolve in response to bidirectional size-dependent selection mimicking opposite harvest regimes. Specifically, we imposed selection against a small body size (Large line), against a large body size (Small line) or random selection (Control line), and measured correlated responses across multiple phenotypic, life-history and endocrine traits. As expected, the Large line evolved faster somatic growth and delayed maturation, but also evolved smaller body sizes at hatch, with no change in average levels of pituitary gene expressions of luteinizing, folliclestimulating or growth (GH) hormones. In contrast, the Small medaka line was unable to evolve smaller body sizes or earlier maturation, but evolved smaller body sizes at hatch and showed marginally-significant signs of increased reproductive investment, including larger egg sizes and elevated pituitary GH production. Natural selection on medaka body size was too weak to significantly hinder the effect of artificial selection, indicating that the asymmetric body-size response to size-dependent selection reflected an asymmetry in body-size evolvability. Our results show that trait evolvability may be contingent upon the direction of selection, and that a detailed knowledge of trait evolutionary potential is needed to forecast population response to anthropogenic change.


2020 ◽  
Vol 66 (2) ◽  
pp. 165-171
Author(s):  
Xia-Ming Zhu ◽  
Yu Du ◽  
Yan-Fu Qu ◽  
Hong Li ◽  
Jian-Fang Gao ◽  
...  

Abstract Monitor lizards (Varanidae) inhabit both the mainland and islands of all geological types and have diversified into an exceptionally wide range of body sizes, thus providing an ideal model for examining the role of mainland versus island in driving species evolution. Here we use phylogenetic comparative methods to examine whether a link exists between body size-driven diversification and body size-frequency distributions in varanid lizards and to test the hypothesis that island lizards differ from mainland species in evolutionary processes, body size, and life-history traits (offspring number and size). We predict that: 1) since body size drives rapid diversification in groups, a link exists between body size-driven diversification and body size-frequency distributions; 2) because of various environments on island, island species will have higher speciation, extinction, and dispersal rates, compared with mainland species; 3) as a response to stronger intraspecific competition, island species will maximize individual ability associated with body size to outcompete closely-related species, and island species will produce smaller clutches of larger eggs to increase offspring quality. Our results confirm that the joint effect of differential macroevolutionary rates shapes the species richness pattern of varanid lizards. There is a link between body size-driven diversification and body size-frequency distributions, and the speciation rate is maximized at medium body sizes. Island species will have higher speciation, equal extinction, and higher dispersal rates compared with mainland species. Smaller clutch size and larger hatchling in the island than in mainland species indicate that offspring quality is more valuable than offspring quantity for island varanids.


2019 ◽  
Vol 59 (3) ◽  
pp. 638-655 ◽  
Author(s):  
Brianna K McHorse ◽  
Andrew A Biewener ◽  
Stephanie E Pierce

AbstractHorses are a classic example of macroevolution in three major traits—large body size, tall-crowned teeth (hypsodonty), and a single toe (monodactyly)—but how and why monodactyly evolved is still poorly understood. Existing hypotheses usually connect digit reduction in horses to the spread and eventual dominance of open-habitat grasslands, which took over from forests during the Cenozoic; digit reduction has been argued to be an adaptation for speed, locomotor economy, stability, and/or increased body size. In this review, we assess the evidence for these (not necessarily mutually exclusive) hypotheses from a variety of related fields, including paleoecology, phylogenetic comparative methods, and biomechanics. Convergent evolution of digit reduction, including in litopterns and artiodactyls, is also considered. We find it unlikely that a single evolutionary driver was responsible for the evolution of monodactyly, because changes in body size, foot posture, habitat, and substrate are frequently found to influence one another (and to connect to broader potential drivers, such as changing climate). We conclude with suggestions for future research to help untangle the complex dynamics of this remarkable morphological change in extinct horses. A path forward should combine regional paleoecology studies, quantitative biomechanical work, and make use of convergence and modern analogs to estimate the relative contributions of potential evolutionary drivers for digit reduction.


2020 ◽  
Vol 29 (2) ◽  
pp. 278-283
Author(s):  
S.G. Ermilov

The oribatid mite subgenus Scheloribates (Topobates) Grandjean, 1958, is recorded from the Neotropical region for the first time. A new species of this subgenus is described from the leaf litter collected in Cayo Agua Island, Panama. Scheloribates (Topobates) panamaensis sp. nov. differs from its related species by the very large body size and presence of a strong ventrodistal process on the leg femora II–IV.


PLoS ONE ◽  
2009 ◽  
Vol 4 (1) ◽  
pp. e3876 ◽  
Author(s):  
C. Jaco Klok ◽  
Jon F. Harrison

Evolution ◽  
2005 ◽  
Vol 59 (11) ◽  
pp. 2426-2432 ◽  
Author(s):  
Richard Shine ◽  
Robert T. Mason

2019 ◽  
Vol 41 (3) ◽  
Author(s):  
Nguyen Ngoc Chau

Bakernema enormese sp. n., collected from rhizosphere of forest wood trees in Muong Phang, Dien Bien Province (north Vietnam) is described and illustrated. The new species is characterized by large body size and stylet. In general, this new species is close to two existing species of the same genus, B. inaequale and B. dauniense by cuticle structure in transparent membranous projections which appear in lateral view as spine-like structures on each annulus. These structure arranged into several rows along the body. In morphology, the new species differs from B. inaequale and B. dauniense  by body and stylet length, i.e. 609–842 µm and 143.5–150 µm vs. 391–578 µm and 59–74 µm for B. inaequale and vs. 391–461 µm and 65–74 µm for B. dauniense. In addition, new species can be distinguished from B. inaequale by the longer membranous projection, 8–12 vs. 6–10 µm and vagina shape, curved vs. sigmoid. From B. dauniense, the new species differs by the much longer membranous projection, 8–12 vs. 1.4–2.2 µm and less number annules between vulva and tail end (RV), 3–4 vs. 7.8 annules. The presence of Criconema (Nothocriconemella) graminicola Loof, Wouts & Yeates, in Vietnam with morphometrics, illustrators and remarks given.


Sign in / Sign up

Export Citation Format

Share Document