scholarly journals In vitro analysis of RNA polymerase II elongation complex dynamics

2019 ◽  
Author(s):  
Yoo Jin Joo ◽  
Scott B. Ficarro ◽  
Yujin Chun ◽  
Jarrod A. Marto ◽  
Stephen Buratowski

AbstractRNA polymerase II elongation complexes (ECs) were assembled from nuclear extract on immobilized DNA templates and analyzed by quantitative mass spectrometry. Time course experiments showed that initiation factor TFIIF can remain bound to early ECs, while levels of core elongation factors Spt4-Spt5, Paf1C, Spt6-Spn1, and Elf1 levels remain steady. Importantly, the dynamic phosphorylation patterns of the Rpb1 C-terminal domain (CTD), and the factors that recognize them, change as a function of post-initiation time, rather than distance elongated. Chemical inhibition of Kin28/Cdk7 blocks both Serine 5 and Serine 2 phosphorylation, affects initiation site choice, and inhibits elongation efficiency. EC components dependent on CTD phosphorylation include capping enzyme, Cap Binding Complex, Set2, and the PAF1 complex. By recapitulating many known features of in vivo elongation, this system reveals new details that clarify how EC-associated core elongation factors, chromatin regulators, and RNA processing factors change at each step of transcription.

1990 ◽  
Vol 10 (11) ◽  
pp. 5782-5795 ◽  
Author(s):  
D K Wiest ◽  
D K Hawley

Transcription from the adenovirus major late (ML) promoter has previously been shown to pause or terminate prematurely in vivo and in vitro at a site within the first intron of the major late transcription unit. We are studying the mechanism of elongation arrest at this site in vitro to define the DNA sequences and proteins that determine the elongation behavior of RNA polymerase II. Our assay system consists of a nuclear extract prepared from cultured human cells. With standard reaction conditions, termination is not observed downstream of the ML promoter. However, in the presence of Sarkosyl, up to 80% of the transcripts terminate 186 nucleotides downstream of the start site. Using this assay, we showed that the DNA sequences required to promote maximal levels of termination downstream of the ML promoter reside within a 65-base-pair region and function in an orientation-dependent manner. To test whether elongation complexes from the ML promoter were functionally homogeneous, we determined the termination efficiency at each of two termination sites placed in tandem. We found that the behavior of the elongation complexes was different at these sites, with termination being greater at the downstream site over a wide range of Sarkosyl concentrations. This result ruled out a model in which the polymerases that read through the first site were stably modified to antiterminate. We also demonstrated that the ability of the elongation complexes to respond to the ML termination site was promoter specific, as the site did not function efficiently downstream of a heterologous promoter. Taken together, the results presented here are not consistent with the simplest class of models that have been proposed previously for the mechanism of Sarkosyl-induced termination.


2019 ◽  
Vol 33 (9-10) ◽  
pp. 578-589 ◽  
Author(s):  
Yoo Jin Joo ◽  
Scott B. Ficarro ◽  
Yujin Chun ◽  
Jarrod A. Marto ◽  
Stephen Buratowski

2001 ◽  
Vol 21 (21) ◽  
pp. 7495-7508 ◽  
Author(s):  
Dong P. Tran ◽  
Steven J. Kim ◽  
Noh Jin Park ◽  
Tiffany M. Jew ◽  
Harold G. Martinson

ABSTRACT Termination of transcription by RNA polymerase II usually requires the presence of a functional poly(A) site. How the poly(A) site signals its presence to the polymerase is unknown. All models assume that the signal is generated after the poly(A) site has been extruded from the polymerase, but this has never been tested experimentally. It is also widely accepted that a “pause” element in the DNA stops the polymerase and that cleavage at the poly(A) site then signals termination. These ideas also have never been tested. The lack of any direct tests of the poly(A) signaling mechanism reflects a lack of success in reproducing the poly(A) signaling phenomenon in vitro. Here we describe a cell-free transcription elongation assay that faithfully recapitulates poly(A) signaling in a crude nuclear extract. The assay requires the use of citrate, an inhibitor of RNA polymerase II carboxyl-terminal domain phosphorylation. Using this assay we show the following. (i) Wild-type but not mutant poly(A) signals instruct the polymerase to stop transcription on downstream DNA in a manner that parallels true transcription termination in vivo. (ii) Transcription stops without the need of downstream elements in the DNA. (iii)cis-antisense inhibition blocks signal transduction, indicating that the signal to stop transcription is generated following extrusion of the poly(A) site from the polymerase. (iv) Signaling can be uncoupled from processing, demonstrating that signaling does not require cleavage at the poly(A) site.


2006 ◽  
Vol 27 (3) ◽  
pp. 926-936 ◽  
Author(s):  
Mariela Reyes-Reyes ◽  
Michael Hampsey

ABSTRACT The RNA polymerase II (RNAP II) transcription cycle is accompanied by changes in the phosphorylation status of the C-terminal domain (CTD), a reiterated heptapeptide sequence (Y1S2P3T4S5P6S7) present at the C terminus of the largest RNAP II subunit. One of the enzymes involved in this process is Ssu72, a CTD phosphatase with specificity for serine-5-P. Here we report that the ssu72-2-encoded Ssu72-R129A protein is catalytically impaired in vitro and that the ssu72-2 mutant accumulates the serine-5-P form of RNAP II in vivo. An in vitro transcription system derived from the ssu72-2 mutant exhibits impaired elongation efficiency. Mutations in RPB1 and RPB2, the genes encoding the two largest subunits of RNAP II, were identified as suppressors of ssu72-2. The rpb1-1001 suppressor encodes an R1281A replacement, whereas rpb2-1001 encodes an R983G replacement. This information led us to identify the previously defined rpb2-4 and rpb2-10 alleles, which encode catalytically slow forms of RNAP II, as additional suppressors of ssu72-2. Furthermore, deletion of SPT4, which encodes a subunit of the Spt4-Spt5 early elongation complex, also suppresses ssu72-2, whereas the spt5-242 allele is suppressed by rpb2-1001. These results define Ssu72 as a transcription elongation factor. We propose a model in which Ssu72 catalyzes serine-5-P dephosphorylation subsequent to addition of the 7-methylguanosine cap on pre-mRNA in a manner that facilitates the RNAP II transition into the elongation stage of the transcription cycle.


1992 ◽  
Vol 12 (5) ◽  
pp. 2067-2077 ◽  
Author(s):  
D D Kephart ◽  
N F Marshall ◽  
D H Price

We show that nuclear extract from Drosophila Kc cells supports efficient elongation by RNA polymerase II initiated from the actin 5C promoter. The addition of 0.3% Sarkosyl, 1 mg of heparin per ml, or 250 mM KCl immediately after initiation has two effects. First, the elongation rate is reduced 80 to 90% as a result of the inhibition of elongation factors. Second, there is an increase in the amount of long runoff RNA, suggesting that there is an early block to elongation that is relieved by the disruptive reagents. Consistent with the first effect, we find that the ability of factor 5 (TFIIF) to stimulate the elongation rate is inhibited by the disruptive agents when assayed in a defined system containing pure RNA polymerase II and a dC-tailed template. The disruptive agents also inhibit the ability of DmS-II to suppress transcriptional pausing but only slightly reduce the ability of DmS-II to increase the elongation rate twofold. The pause sites encountered by RNA polymerase II after initiation at a promoter and subsequent treatment with the disruptive reagents are also recognized by pure polymerase transcribing a dC-tailed template. It has been suggested that 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits RNA polymerase II during elongation, but we find that the purine nucleoside analog has no effect on elongation complexes containing RNA over 500 nucleotides in length or on the action of factor 5 or DmS-II in the defined system.


1992 ◽  
Vol 12 (5) ◽  
pp. 2067-2077
Author(s):  
D D Kephart ◽  
N F Marshall ◽  
D H Price

We show that nuclear extract from Drosophila Kc cells supports efficient elongation by RNA polymerase II initiated from the actin 5C promoter. The addition of 0.3% Sarkosyl, 1 mg of heparin per ml, or 250 mM KCl immediately after initiation has two effects. First, the elongation rate is reduced 80 to 90% as a result of the inhibition of elongation factors. Second, there is an increase in the amount of long runoff RNA, suggesting that there is an early block to elongation that is relieved by the disruptive reagents. Consistent with the first effect, we find that the ability of factor 5 (TFIIF) to stimulate the elongation rate is inhibited by the disruptive agents when assayed in a defined system containing pure RNA polymerase II and a dC-tailed template. The disruptive agents also inhibit the ability of DmS-II to suppress transcriptional pausing but only slightly reduce the ability of DmS-II to increase the elongation rate twofold. The pause sites encountered by RNA polymerase II after initiation at a promoter and subsequent treatment with the disruptive reagents are also recognized by pure polymerase transcribing a dC-tailed template. It has been suggested that 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits RNA polymerase II during elongation, but we find that the purine nucleoside analog has no effect on elongation complexes containing RNA over 500 nucleotides in length or on the action of factor 5 or DmS-II in the defined system.


1990 ◽  
Vol 10 (11) ◽  
pp. 5782-5795
Author(s):  
D K Wiest ◽  
D K Hawley

Transcription from the adenovirus major late (ML) promoter has previously been shown to pause or terminate prematurely in vivo and in vitro at a site within the first intron of the major late transcription unit. We are studying the mechanism of elongation arrest at this site in vitro to define the DNA sequences and proteins that determine the elongation behavior of RNA polymerase II. Our assay system consists of a nuclear extract prepared from cultured human cells. With standard reaction conditions, termination is not observed downstream of the ML promoter. However, in the presence of Sarkosyl, up to 80% of the transcripts terminate 186 nucleotides downstream of the start site. Using this assay, we showed that the DNA sequences required to promote maximal levels of termination downstream of the ML promoter reside within a 65-base-pair region and function in an orientation-dependent manner. To test whether elongation complexes from the ML promoter were functionally homogeneous, we determined the termination efficiency at each of two termination sites placed in tandem. We found that the behavior of the elongation complexes was different at these sites, with termination being greater at the downstream site over a wide range of Sarkosyl concentrations. This result ruled out a model in which the polymerases that read through the first site were stably modified to antiterminate. We also demonstrated that the ability of the elongation complexes to respond to the ML termination site was promoter specific, as the site did not function efficiently downstream of a heterologous promoter. Taken together, the results presented here are not consistent with the simplest class of models that have been proposed previously for the mechanism of Sarkosyl-induced termination.


2005 ◽  
Vol 83 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Benoit Coulombe ◽  
Marie-France Langelier

High resolution X-ray crystal structures of multisubunit RNA polymerases (RNAP) have contributed to our understanding of transcriptional mechanisms. They also provided a powerful guide for the design of experiments aimed at further characterizing the molecular stages of the transcription reaction. Our laboratory used tandem-affinity peptide purification in native conditions to isolate human RNAP II variants that had site-specific mutations in structural elements located strategically within the enzyme's catalytic center. Both in vitro and in vivo analyses of these mutants revealed novel features of the catalytic mechanisms involving this enzyme.Key words: RNA polymerase II, transcriptional mechanisms, mutational analysis, mRNA synthesis.


2001 ◽  
Vol 276 (15) ◽  
pp. 12266-12273 ◽  
Author(s):  
Wenxiang Wei ◽  
Dorjbal Dorjsuren ◽  
Yong Lin ◽  
Weiping Qin ◽  
Takahiro Nomura ◽  
...  

The general transcription factor IIF (TFIIF) assembled in the initiation complex, and RAP30 of TFIIF, have been shown to associate with RNA polymerase II (pol II), although it remains unclear which pol II subunit is responsible for the interaction. We examined whether TFIIF interacts with RNA polymerase II subunit 5 (RPB5), the exposed domain of which binds transcriptional regulatory factors such as hepatitis B virus X protein and a novel regulatory protein, RPB5-mediating protein. The results demonstrated that RPB5 directly binds RAP30in vitrousing purified recombinant proteins andin vivoin COS1 cells transiently expressing recombinant RAP30 and RPB5. The RAP30-binding region was mapped to the central region (amino acids (aa) 47–120) of RPB5, which partly overlaps the hepatitis B virus X protein-binding region. Although the middle part (aa 101–170) and the N-terminus (aa 1–100) of RAP30 independently bound RPB5, the latter was not involved in the RPB5 binding when RAP30 was present in TFIIF complex. Scanning of the middle part of RAP30 by clustered alanine substitutions and then point alanine substitutions pinpointed two residues critical for the RPB5 binding inin vitroandin vivoassays. Wild type but not mutants Y124A and Q131A of RAP30 coexpressed with FLAG-RAP74 efficiently recovered endogenous RPB5 to the FLAG-RAP74-bound anti-FLAG M2 resin. The recovered endogenous RPB5 is assembled in pol II as demonstrated immunologically. Interestingly, coexpression of the central region of RPB5 and wild type RAP30 inhibited recovery of endogenous pol II to the FLAG-RAP74-bound M2 resin, strongly suggesting that the RAP30-binding region of RPB5 inhibited the association of TFIIF and pol II. The exposed domain of RPB5 interacts with RAP30 of TFIIF and is important for the association between pol II and TFIIF.


2007 ◽  
Vol 27 (13) ◽  
pp. 4641-4651 ◽  
Author(s):  
Junjiang Fu ◽  
Ho-Geun Yoon ◽  
Jun Qin ◽  
Jiemin Wong

ABSTRACT P-TEFb, comprised of CDK9 and a cyclin T subunit, is a global transcriptional elongation factor important for most RNA polymerase II (pol II) transcription. P-TEFb facilitates transcription elongation in part by phosphorylating Ser2 of the heptapeptide repeat of the carboxy-terminal domain (CTD) of the largest subunit of pol II. Previous studies have shown that P-TEFb is subjected to negative regulation by forming an inactive complex with 7SK small RNA and HEXIM1. In an effort to investigate the molecular mechanism by which corepressor N-CoR mediates transcription repression, we identified HEXIM1 as an N-CoR-interacting protein. This finding led us to test whether the P-TEFb complex is regulated by acetylation. We demonstrate that CDK9 is an acetylated protein in cells and can be acetylated by p300 in vitro. Through both in vitro and in vivo assays, we identified lysine 44 of CDK9 as a major acetylation site. We present evidence that CDK9 is regulated by N-CoR and its associated HDAC3 and that acetylation of CDK9 affects its ability to phosphorylate the CTD of pol II. These results suggest that acetylation of CDK9 is an important posttranslational modification that is involved in regulating P-TEFb transcriptional elongation function.


Sign in / Sign up

Export Citation Format

Share Document