scholarly journals In vitro analysis of a transcription termination site for RNA polymerase II.

1990 ◽  
Vol 10 (11) ◽  
pp. 5782-5795 ◽  
Author(s):  
D K Wiest ◽  
D K Hawley

Transcription from the adenovirus major late (ML) promoter has previously been shown to pause or terminate prematurely in vivo and in vitro at a site within the first intron of the major late transcription unit. We are studying the mechanism of elongation arrest at this site in vitro to define the DNA sequences and proteins that determine the elongation behavior of RNA polymerase II. Our assay system consists of a nuclear extract prepared from cultured human cells. With standard reaction conditions, termination is not observed downstream of the ML promoter. However, in the presence of Sarkosyl, up to 80% of the transcripts terminate 186 nucleotides downstream of the start site. Using this assay, we showed that the DNA sequences required to promote maximal levels of termination downstream of the ML promoter reside within a 65-base-pair region and function in an orientation-dependent manner. To test whether elongation complexes from the ML promoter were functionally homogeneous, we determined the termination efficiency at each of two termination sites placed in tandem. We found that the behavior of the elongation complexes was different at these sites, with termination being greater at the downstream site over a wide range of Sarkosyl concentrations. This result ruled out a model in which the polymerases that read through the first site were stably modified to antiterminate. We also demonstrated that the ability of the elongation complexes to respond to the ML termination site was promoter specific, as the site did not function efficiently downstream of a heterologous promoter. Taken together, the results presented here are not consistent with the simplest class of models that have been proposed previously for the mechanism of Sarkosyl-induced termination.

1990 ◽  
Vol 10 (11) ◽  
pp. 5782-5795
Author(s):  
D K Wiest ◽  
D K Hawley

Transcription from the adenovirus major late (ML) promoter has previously been shown to pause or terminate prematurely in vivo and in vitro at a site within the first intron of the major late transcription unit. We are studying the mechanism of elongation arrest at this site in vitro to define the DNA sequences and proteins that determine the elongation behavior of RNA polymerase II. Our assay system consists of a nuclear extract prepared from cultured human cells. With standard reaction conditions, termination is not observed downstream of the ML promoter. However, in the presence of Sarkosyl, up to 80% of the transcripts terminate 186 nucleotides downstream of the start site. Using this assay, we showed that the DNA sequences required to promote maximal levels of termination downstream of the ML promoter reside within a 65-base-pair region and function in an orientation-dependent manner. To test whether elongation complexes from the ML promoter were functionally homogeneous, we determined the termination efficiency at each of two termination sites placed in tandem. We found that the behavior of the elongation complexes was different at these sites, with termination being greater at the downstream site over a wide range of Sarkosyl concentrations. This result ruled out a model in which the polymerases that read through the first site were stably modified to antiterminate. We also demonstrated that the ability of the elongation complexes to respond to the ML termination site was promoter specific, as the site did not function efficiently downstream of a heterologous promoter. Taken together, the results presented here are not consistent with the simplest class of models that have been proposed previously for the mechanism of Sarkosyl-induced termination.


1986 ◽  
Vol 6 (11) ◽  
pp. 937-944
Author(s):  
Balazs J. Kovacs ◽  
Peter H. W. Butterworth

Experiments are described which probe the relationship between three sequence elements which make up the eukaryotic RNA polymerase II promoter. A cloned eukaryotic gene, from which the TATA-box and 400 base pairs of Y-flanking sequence has been deleted, is still transcriptionally active in vivo (following its transfection into cultured mammalian cells) and in vitro. Deletion has appropriately positioned a cluster of five TATA box-like sequences upstream from multiple potential cap sites. Which cap sites are actually used can be predicted from the DNA sequence of TATA box-like sequences and their spatial relationship with respect to possible transcriptional start sites, although there appears to be some difference in cap site utilisation in vitro and in vivo. Data suggest that deletion has also removed “upstream” sequences which affect promoter function.


1988 ◽  
Vol 8 (5) ◽  
pp. 2021-2033 ◽  
Author(s):  
D E Ayer ◽  
W S Dynan

Unlike most genes transcribed by RNA polymerase II, the simian virus 40 late transcription unit does not have a TATA box. To determine what sequences are required for initiation at the major late mRNA cap site of simian virus 40, clustered point mutations were constructed and tested for transcriptional activity in vitro and in vivo. Three promoter elements were defined. The first is centered 31 base pairs upstream of the cap site in a position normally reserved for a TATA box. The second is at the cap site. The third occupies a novel position centered 28 base pairs downstream of the cap site within a protein-coding sequence. The ability of RNA polymerase II to recognize this promoter suggests that there is greater variation in promoter architecture than had been believed previously.


2001 ◽  
Vol 21 (21) ◽  
pp. 7495-7508 ◽  
Author(s):  
Dong P. Tran ◽  
Steven J. Kim ◽  
Noh Jin Park ◽  
Tiffany M. Jew ◽  
Harold G. Martinson

ABSTRACT Termination of transcription by RNA polymerase II usually requires the presence of a functional poly(A) site. How the poly(A) site signals its presence to the polymerase is unknown. All models assume that the signal is generated after the poly(A) site has been extruded from the polymerase, but this has never been tested experimentally. It is also widely accepted that a “pause” element in the DNA stops the polymerase and that cleavage at the poly(A) site then signals termination. These ideas also have never been tested. The lack of any direct tests of the poly(A) signaling mechanism reflects a lack of success in reproducing the poly(A) signaling phenomenon in vitro. Here we describe a cell-free transcription elongation assay that faithfully recapitulates poly(A) signaling in a crude nuclear extract. The assay requires the use of citrate, an inhibitor of RNA polymerase II carboxyl-terminal domain phosphorylation. Using this assay we show the following. (i) Wild-type but not mutant poly(A) signals instruct the polymerase to stop transcription on downstream DNA in a manner that parallels true transcription termination in vivo. (ii) Transcription stops without the need of downstream elements in the DNA. (iii)cis-antisense inhibition blocks signal transduction, indicating that the signal to stop transcription is generated following extrusion of the poly(A) site from the polymerase. (iv) Signaling can be uncoupled from processing, demonstrating that signaling does not require cleavage at the poly(A) site.


1988 ◽  
Vol 8 (5) ◽  
pp. 2021-2033
Author(s):  
D E Ayer ◽  
W S Dynan

Unlike most genes transcribed by RNA polymerase II, the simian virus 40 late transcription unit does not have a TATA box. To determine what sequences are required for initiation at the major late mRNA cap site of simian virus 40, clustered point mutations were constructed and tested for transcriptional activity in vitro and in vivo. Three promoter elements were defined. The first is centered 31 base pairs upstream of the cap site in a position normally reserved for a TATA box. The second is at the cap site. The third occupies a novel position centered 28 base pairs downstream of the cap site within a protein-coding sequence. The ability of RNA polymerase II to recognize this promoter suggests that there is greater variation in promoter architecture than had been believed previously.


2019 ◽  
Author(s):  
Yoo Jin Joo ◽  
Scott B. Ficarro ◽  
Yujin Chun ◽  
Jarrod A. Marto ◽  
Stephen Buratowski

AbstractRNA polymerase II elongation complexes (ECs) were assembled from nuclear extract on immobilized DNA templates and analyzed by quantitative mass spectrometry. Time course experiments showed that initiation factor TFIIF can remain bound to early ECs, while levels of core elongation factors Spt4-Spt5, Paf1C, Spt6-Spn1, and Elf1 levels remain steady. Importantly, the dynamic phosphorylation patterns of the Rpb1 C-terminal domain (CTD), and the factors that recognize them, change as a function of post-initiation time, rather than distance elongated. Chemical inhibition of Kin28/Cdk7 blocks both Serine 5 and Serine 2 phosphorylation, affects initiation site choice, and inhibits elongation efficiency. EC components dependent on CTD phosphorylation include capping enzyme, Cap Binding Complex, Set2, and the PAF1 complex. By recapitulating many known features of in vivo elongation, this system reveals new details that clarify how EC-associated core elongation factors, chromatin regulators, and RNA processing factors change at each step of transcription.


2003 ◽  
Vol 23 (22) ◽  
pp. 8323-8333 ◽  
Author(s):  
Paul B. Mason ◽  
Kevin Struhl

ABSTRACT The FACT complex facilitates transcription on chromatin templates in vitro, and it has been functionally linked to nucleosomes and putative RNA polymerase II (Pol II) elongation factors. In Saccharomyces cerevisiae cells, FACT specifically associates with active Pol II genes in a TFIIH-dependent manner and travels across the gene with elongating Pol II. Conditional inactivation of the FACT subunit Spt16 results in increased Pol II density, transcription, and TATA-binding protein (TBP) occupancy in the 3′ portion of certain coding regions, indicating that FACT suppresses inappropriate initiation from cryptic promoters within coding regions. Conversely, loss of Spt16 activity reduces the association of TBP, TFIIB, and Pol II with normal promoters. Thus, FACT is required for wild-type cells to restrict initiation to normal promoters, thereby ensuring that only appropriate mRNAs are synthesized. We suggest that FACT contributes to the fidelity of Pol II transcription by linking the processes of initiation and elongation.


1978 ◽  
Vol 176 (3) ◽  
pp. 715-725 ◽  
Author(s):  
T J C Beebee

1. A nucleoplasmic fraction rich in endogenous RNA polymerase II activity was isolated from rat liver nuclei and conditions were determined under which elongation of RNA molecules initiated in vivo continued at maximal rates in vitro. 2. Elongation rates in vitro were calculated to be about 0.25 nucleotide/s and there were about 7 × 10(3) RNA molecules in the process of being elongated by form-II RNA polymerase per original nucleus. 3. Evidence was obtained suggesting that transcription-dependent release of RNA polymerase II molecules from the template occurred during the incubations in vitro. 4. The nascent RNA was tightly associated with protein and banded as ribonucleoprotein in caesium salt gradients. 5. RNA molecules labelled in vitro were up to 13000 nucleotides in length, but consisted of long unlabelled chains transcribed in vivo with only short labelled sequences added in vitro, and without significant polyadenylation. 6. Hybridization of transcripts in the presence of a vast excess of DNA demonstrated that both form-II RNA polymerase and another enzyme, resistant to low alpha-amanitin concentrations, were synthesizing RNA molecules complementary to both reiterated and unique DNA sequences in the genome.


2001 ◽  
Vol 276 (15) ◽  
pp. 11531-11538 ◽  
Author(s):  
Megan Wind-Rotolo ◽  
Daniel Reines

In vitro, transcript elongation by RNA polymerase II is impeded by DNA sequences, DNA-bound proteins, and small ligands. Transcription elongation factor SII (TFIIS) assists RNA polymerase II to transcribe through these obstacles. There is however, little direct evidence that SII-responsive arrest sites function in living cells nor that SII facilitates readthroughin vivo. Saccharomyces cerevisiaestrains lacking elongation factor SII and/or containing a point mutation in the second largest subunit of RNA polymerase II, which slows the enzyme's RNA elongation rate, grow slowly and have defects in mRNA metabolism, particularly in the presence of nucleotide-depleting drugs. Here we have examined transcriptional induction in strains lacking SII or containing the slow polymerase mutation. Both mutants and a combined double mutant were defective in induction ofGAL1andENA1. This was not due to an increase in mRNA degradation and was independent of any drug treatment, although treatment with the nucleotide-depleting drug 6-azauracil exacerbated the effect preferentially in the mutants. These data are consistent with mutants in the Elongator complex, which show slow inductive responses. When a potentin vitroarrest site was transcribed in these strains, there was no perceptible effect upon mRNA accumulation. These data suggest that an alternative elongation surveillance mechanism existsin vivoto overcome arrest.


2005 ◽  
Vol 83 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Benoit Coulombe ◽  
Marie-France Langelier

High resolution X-ray crystal structures of multisubunit RNA polymerases (RNAP) have contributed to our understanding of transcriptional mechanisms. They also provided a powerful guide for the design of experiments aimed at further characterizing the molecular stages of the transcription reaction. Our laboratory used tandem-affinity peptide purification in native conditions to isolate human RNAP II variants that had site-specific mutations in structural elements located strategically within the enzyme's catalytic center. Both in vitro and in vivo analyses of these mutants revealed novel features of the catalytic mechanisms involving this enzyme.Key words: RNA polymerase II, transcriptional mechanisms, mutational analysis, mRNA synthesis.


Sign in / Sign up

Export Citation Format

Share Document