scholarly journals All-optical interrogation of a direction selective retinal circuit by holographic wave front shaping

2019 ◽  
Author(s):  
G.L.B Spampinato ◽  
E. Ronzitti ◽  
V. Zampini ◽  
U. Ferrari ◽  
F. Trapani ◽  
...  

AbstractDirection selective (DS) ganglion cells (GC) in the retina maintain their tuning across a broad range of light levels. Yet very different circuits can shape their responses from bright to dim light, and their respective contributions are difficult to tease apart. In particular, the contribution of the rod bipolar cell (RBC) primary pathway, a key player in dim light, is unclear. To understand its contribution to DSGC response, we designed an all-optical approach allowing precise manipulation of single retinal neurons. Our system activates single cells in the bipolar cell (BC) layer by two-photon (2P) temporally focused holographic illumination, while recording the activity in the ganglion cell layer by 2P Ca2 imaging. By doing so, we demonstrate that RBCs provide an asymmetric input to DSGCs, suggesting they contribute to their direction selectivity. Our results suggest that every circuit providing an input to direction selective cells can generate direction selectivity by itself. This hints at a general principle to achieve robust selectivity in sensory areas.

2020 ◽  
Author(s):  
Akihiro Matsumoto ◽  
Weaam Agbariah ◽  
Stella Solveig Nolte ◽  
Rawan Andrawos ◽  
Hadara Levi ◽  
...  

AbstractThe ability to encode the direction of image motion is fundamental to our sense of vision. Direction selectivity along the four cardinal directions is thought to originate in direction-selective ganglion cells (DSGCs), due to directionally-tuned GABAergic suppression by starburst cells. Here, by utilizing two-photon glutamate imaging to measure synaptic release, we reveal that direction selectivity along all four directions arises earlier than expected, at bipolar cell outputs. Thus, DSGCs receive directionally-aligned glutamatergic inputs from bipolar cell boutons. We further show that this bouton-specific tuning relies on cholinergic excitation and GABAergic inhibition from starburst cells. In this way, starburst cells are able to refine directional tuning in the excitatory visual pathway by modulating the activity of DSGC dendrites and their axonal inputs using two different neurotransmitters.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Varsha Jain ◽  
Benjamin L Murphy-Baum ◽  
Geoff deRosenroll ◽  
Santhosh Sethuramanujam ◽  
Mike Delsey ◽  
...  

Recent studies indicate that the precise timing and location of excitation and inhibition (E/I) within active dendritic trees can significantly impact neuronal function. How synaptic inputs are functionally organized at the subcellular level in intact circuits remains unclear. To address this issue, we took advantage of the retinal direction-selective ganglion cell circuit, where directionally tuned inhibition is known to shape non-directional excitatory signals. We combined two-photon calcium imaging with genetic, pharmacological, and single-cell ablation methods to examine the extent to which inhibition ‘vetoes’ excitation at the level of individual dendrites of direction-selective ganglion cells. We demonstrate that inhibition shapes direction selectivity independently within small dendritic segments (<10µm) with remarkable accuracy. The data suggest that the parallel processing schemes proposed for direction encoding could be more fine-grained than previously envisioned.


Author(s):  
Thomas Euler ◽  
Katrin Franke ◽  
Tom Baden

Two-photon imaging of light stimulus-evoked neuronal activity has been used to study all neuron classes in the vertebrate retina, from the photoreceptors to the retinal ganglion cells. Clearly, the ability to study retinal circuits down to the level of single synapses or zoomed out at the level of complete populations of neurons, has been a major asset in our understanding of this beautiful circuit. In this chapter, we discuss the possibilities and pitfalls of using an all-optical approach in this highly light-sensitive part of the brain.


1985 ◽  
Vol 53 (3) ◽  
pp. 714-725 ◽  
Author(s):  
S. A. Bloomfield ◽  
J. E. Dowling

Intracellular recordings were obtained from amacrine and ganglion cells in the superfused, isolated retina-eyecup of the rabbit. The putative neurotransmitters aspartate, glutamate, and several of their analogues were added to the superfusate while the membrane potential and light-responsiveness of the retinal neurons were monitored. Both L-aspartate and L-glutamate displayed excitatory actions on the activity of the vast majority of amacrine and ganglion cells studied. However, these agents occasionally appeared to inhibit the responses of the inner retinal neurons by producing hyperpolarization of the membrane potential and blockage of the light-evoked responses. In either case, the effects of aspartate and glutamate were indistinguishable. The glutamate analogues kainate and quisqualate produced strong excitatory effects on the responses of amacrine and ganglion cells at concentrations some 200-fold less than those needed to obtain similar effects with aspartate or glutamate. The aspartate analogue, n-methyl DL-aspartate (NMDLA), also produced strong excitatory effects but was approximately three times less potent than kainate or quisqualate. On one occasion, we encountered a ganglion cell that was depolarized by kainate, but hyperpolarized by NMDLA. The glutamate antagonist alpha-methyl glutamate and the aspartate antagonist alpha-amino adipate effectively blocked the responses of amacrine and ganglion cells. However, on any one cell, one antagonist was always clearly more potent than the other. We examined the actions of the glutamate analogue 2-amino-4-phosphonobutyrate (APB) on the responses of inner retinal neurons and found that it selectively abolished all "on" activity in the inner retina. Together with our finding that APB selectively abolishes on-bipolar cell responses (see Ref. 6), these data support the hypothesis that on-bipolar cells subserve the "on" activity of amacrine and ganglion cells. Our data suggest that aspartate and glutamate are excitatory transmitters in the inner retina, possibly being released from bipolar cell axon terminals in the inner plexiform layer.


2021 ◽  
Author(s):  
Alexandre Tiriac ◽  
Karina Bistrong ◽  
Marla Feller

Retinal waves and visual experience have been implicated in the formation of retinotopic and eye-specific maps throughout the visual system, but whether either play a role in the development of the maps within the retina itself is unknown. We explore this question using direction-selective retinal ganglion cells, which are organized into a map that aligns to the body and gravitational axes of optic flow. Using two-photon population calcium imaging, we find that the direction selectivity map is present at eye opening and is unaltered by dark-rearing. Remarkably, the horizontal component of the direction selectivity map is absent in mice lacking normal retinal waves, whereas the vertical component remains normal. These results indicate that intrinsic patterns of activity, rather than extrinsic motion signals are critical for the establishment of direction selectivity maps in the retina.


1989 ◽  
Vol 3 (5) ◽  
pp. 425-431 ◽  
Author(s):  
Christine Blazynski

AbstractIt is generally accepted that the purine nucleoside, adenosine, plays a neuromodulatory role in the central nervous system (CNS) (Daly et al., 1981; Phillis ' Wu, 1983; Williams, 1986; Williams, 1987; Snyder, 1985). Adenosine is thought to exert its primary effects presynaptically, by inhibiting the release of neurotransmitters including ³-aminobutyric acid (GABA) and acetylcholine (ACh) (Phillis ' Barraco, 1985; Proctor ' Dunwiddie, 1987). In mammalian retina, cell bodies that are strongly labeled for adenosine-like immunoreactivity (ALIR) have been localized to the ganglion cell layer (GCL) (Braas et al., 1987; Blazynski et al., 1989). Rabbit retinal cells that are labeled by markers for both ACh and GABA are located in the GCL and inner nuclear layer (INL) (Tauchi ' Masland, 1984; Vaney ' Young, 1988b; Brecha et al., 1988). It is now demonstrated in the rabbit retina that approximately 50% of the cells labeled for ALIR within the GCL represent true ganglion cells, with the remainder presumed to be displaced cholinergic amacrine cells (DAPI accumulating). In addition, some of these same cells also demonstrate immunoreactivity to glutamate decarboxylase (GAD), involved in the biosynthesis of the neurotransmitter GABA. Thus, in a particular class of retinal neurons, two fast-acting neurotransmitters as well as a putative neuromodulator have been co-localized.


2018 ◽  
Author(s):  
Niansheng Ju ◽  
Rundong Jiang ◽  
Stephen L. Macknik ◽  
Susana Martinez-Conde ◽  
Shiming Tang

ABSTRACTWhereas optogenetic techniques have proven successful in their ability to manipulate neuronal populations in species ranging from insects to rodents—with high spatial and temporal fidelity—significant obstacles remain in their application to non-human primates (NHPs). Robust optogenetics-activated behavior and long-term noninvasive monitoring of target neurons, have been challenging in NHPs. Here we present a method for all-optical interrogation (AOI), integrating optical stimulation and simultaneous two-photon imaging of neuronal populations in the primary visual cortex (V1) of awake rhesus macaques. A red-shifted channel-rhodopsin transgene (C1V1) and genetically-encoded calcium indicators (GCaMP5 or GCaMP6s) were delivered by AAVs, and subsequently expressed in V1 neuronal populations for months with high stability. We achieved optogenetic stimulation using both single-photon (1P) activation of neuronal populations and two-photon (2P) activation of single-cells, while simultaneously recording 2P calcium imaging in awake monkeys. Optogenetic manipulations of V1 neuronal populations produced reliable artificial visual percepts. Together, our advances show the feasibility of precise and stable all-optical interrogation of cortical neurons in awake NHPs, which may facilitate broad applications in high-level cognition and pre-clinical testing studies.


2012 ◽  
Vol 107 (10) ◽  
pp. 2742-2755 ◽  
Author(s):  
Max Eickenscheidt ◽  
Martin Jenkner ◽  
Roland Thewes ◽  
Peter Fromherz ◽  
Günther Zeck

Electrical stimulation of retinal neurons offers the possibility of partial restoration of visual function. Challenges in neuroprosthetic applications are the long-term stability of the metal-based devices and the physiological activation of retinal circuitry. In this study, we demonstrate electrical stimulation of different classes of retinal neurons with a multicapacitor array. The array—insulated by an inert oxide—allows for safe stimulation with monophasic anodal or cathodal current pulses of low amplitude. Ex vivo rabbit retinas were interfaced in either epiretinal or subretinal configuration to the multicapacitor array. The evoked activity was recorded from ganglion cells that respond to light increments by an extracellular tungsten electrode. First, a monophasic epiretinal cathodal or a subretinal anodal current pulse evokes a complex burst of action potentials in ganglion cells. The first action potential occurs within 1 ms and is attributed to direct stimulation. Within the next milliseconds additional spikes are evoked through bipolar cell or photoreceptor depolarization, as confirmed by pharmacological blockers. Second, monophasic epiretinal anodal or subretinal cathodal currents elicit spikes in ganglion cells by hyperpolarization of photoreceptor terminals. These stimuli mimic the photoreceptor response to light increments. Third, the stimulation symmetry between current polarities (anodal/cathodal) and retina-array configuration (epi/sub) is confirmed in an experiment in which stimuli presented at different positions reveal the center-surround organization of the ganglion cell. A simple biophysical model that relies on voltage changes of cell terminals in the transretinal electric field above the stimulation capacitor explains our results. This study provides a comprehensive guide for efficient stimulation of different retinal neuronal classes with low-amplitude capacitive currents.


2014 ◽  
Vol 369 (1636) ◽  
pp. 20130039 ◽  
Author(s):  
Eva Landgren ◽  
Kerstin Fritsches ◽  
Richard Brill ◽  
Eric Warrant

Escolar ( Lepidocybium flavobrunneum , family Gempylidae) are large and darkly coloured deep-sea predatory fish found in the cold depths (more than 200 m) during the day and in warm surface waters at night. They have large eyes and an overall low density of retinal ganglion cells that endow them with a very high optical sensitivity. Escolar have banked retinae comprising six to eight layers of rods to increase the optical path length for maximal absorption of the incoming light. Their retinae possess two main areae of higher ganglion cell density, one in the ventral retina viewing the dorsal world above (with a moderate acuity of 4.6 cycles deg −1 ), and the second in the temporal retina viewing the frontal world ahead. Electrophysiological recordings of the flicker fusion frequency (FFF) in isolated retinas indicate that escolar have slow vision, with maximal FFF at the highest light levels and temperatures (around 9 Hz at 23°C) which fall to 1–2 Hz in dim light or cooler temperatures. Our results suggest that escolar are slowly moving sit-and-wait predators. In dim, warm surface waters at night, their slow vision, moderate dorsal resolution and highly sensitive eyes may allow them to surprise prey from below that are silhouetted in the downwelling light.


Neuron ◽  
2021 ◽  
Author(s):  
Akihiro Matsumoto ◽  
Weaam Agbariah ◽  
Stella Solveig Nolte ◽  
Rawan Andrawos ◽  
Hadara Levi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document