Roles of aspartate and glutamate in synaptic transmission in rabbit retina. II. Inner plexiform layer

1985 ◽  
Vol 53 (3) ◽  
pp. 714-725 ◽  
Author(s):  
S. A. Bloomfield ◽  
J. E. Dowling

Intracellular recordings were obtained from amacrine and ganglion cells in the superfused, isolated retina-eyecup of the rabbit. The putative neurotransmitters aspartate, glutamate, and several of their analogues were added to the superfusate while the membrane potential and light-responsiveness of the retinal neurons were monitored. Both L-aspartate and L-glutamate displayed excitatory actions on the activity of the vast majority of amacrine and ganglion cells studied. However, these agents occasionally appeared to inhibit the responses of the inner retinal neurons by producing hyperpolarization of the membrane potential and blockage of the light-evoked responses. In either case, the effects of aspartate and glutamate were indistinguishable. The glutamate analogues kainate and quisqualate produced strong excitatory effects on the responses of amacrine and ganglion cells at concentrations some 200-fold less than those needed to obtain similar effects with aspartate or glutamate. The aspartate analogue, n-methyl DL-aspartate (NMDLA), also produced strong excitatory effects but was approximately three times less potent than kainate or quisqualate. On one occasion, we encountered a ganglion cell that was depolarized by kainate, but hyperpolarized by NMDLA. The glutamate antagonist alpha-methyl glutamate and the aspartate antagonist alpha-amino adipate effectively blocked the responses of amacrine and ganglion cells. However, on any one cell, one antagonist was always clearly more potent than the other. We examined the actions of the glutamate analogue 2-amino-4-phosphonobutyrate (APB) on the responses of inner retinal neurons and found that it selectively abolished all "on" activity in the inner retina. Together with our finding that APB selectively abolishes on-bipolar cell responses (see Ref. 6), these data support the hypothesis that on-bipolar cells subserve the "on" activity of amacrine and ganglion cells. Our data suggest that aspartate and glutamate are excitatory transmitters in the inner retina, possibly being released from bipolar cell axon terminals in the inner plexiform layer.

1999 ◽  
Vol 16 (3) ◽  
pp. 483-490 ◽  
Author(s):  
V.P. CONNAUGHTON ◽  
T.N. BEHAR ◽  
W.-L.S. LIU ◽  
S.C. MASSEY

The patterns of glutamate, γ-aminobutyric acid (GABA), and glycine distribution in the zebrafish retina were determined using immunocytochemical localization of antisera at the light-microscope level. The observed GABA immunoreactivity (GABA-IR) patterns were further characterized using antibodies to both isoforms of glutamic acid decarboxylase (GAD65 and GAD67), the synthetic enzyme for GABA. Glutamate-IR was observed in all retinal layers with photoreceptors, bipolar cells, and ganglion cells prominently labeled. Bipolar cells displayed the most intense glutamate-IR and bipolar cell axon terminals were clearly identified as puncta arranged in layers throughout the inner plexiform layer (IPL). These findings suggest the presence of multiple subtypes of presumed OFF- and ON-bipolar cells, including some ON-bipolar cells characterized by a single, large (9 μm × 6 μm) axon terminal. GABA-, GAD-, and glycine-IR were most intense in the inner retina. In general, the observed labeling patterns for GABA, GAD65, and GAD67 were similar. GABA- and GAD-IR were observed in a population of amacrine cells, a few cells in the ganglion cell layer, throughout the IPL, and in horizontal cells. In the IPL, both GABA- and GAD-IR structures were organized into two broad bands. Glycine-IR was observed in amacrine cells, interplexiform cells, and in both plexiform layers. Glycine-positive terminals were identified throughout the IPL, with a prominent band in sublamina 3 corresponding to an immunonegative region observed in sections stained for GAD and GABA. Our results show the distribution of neurons in the zebrafish retina that use glutamate, GABA, or glycine as their neurotransmitter. The observed distribution of neurotransmitters in the inner retina is consistent with previous studies of other vertebrates and suggests that the advantages of zebrafish for developmental studies may be exploited for retinal studies.


2018 ◽  
Author(s):  
Robert E. Marc ◽  
Crystal Sigulinsky ◽  
Rebecca L. Pfeiffer ◽  
Daniel Emrich ◽  
James R. Anderson ◽  
...  

AbstractAll superclasses of retinal neurons display some form of electrical coupling including the key neurons of the inner plexiform layer: bipolar cells (BCs), amacrine or axonal cells (ACs) and ganglion cells (GCs). However, coupling varies extensively by class. For example, mammalian rod bipolar cells form no gap junctions at all, while all cone bipolar cells form class-specific coupling arrays, many of them homocellular in-superclass arrays. Ganglion cells are unique in that classes with coupling predominantly form heterocellular cross-class arrays of ganglion cell::amacrine cell (GC::AC) coupling in the mammalian retina. Ganglion cells are the least frequent superclass in the inner plexiform layer and GC::AC gap junctions are sparsely arrayed amidst massive cohorts of AC::AC, bipolar cell BC::BC, and AC::BC gap junctions. Many of these gap junctions and most ganglion cell gap junctions are suboptical, complicating analysis of specific ganglion cells. High resolution 2 nm TEM analysis of rabbit retinal connectome RC1 allows quantitative GC::AC coupling maps of identified ganglion cells. Ganglion cells classes apparently avoid direct cross-class homocellular coupling altogether even though they have opportunities via direct membrane touches, while transient OFF alpha ganglion cells and transient ON directionally selective (DS) ganglion cells are strongly coupled to distinct amacrine / axonal cell cohorts.A key feature of coupled ganglion cells is intercellular metabolite flux. Most GC::AC coupling involves GABAergic cells (γ+ amacrine cells), which results in significant GABA flux into ganglion cells. Surveying GABA coupling signatures in the ganglion cell layer across species suggests that the majority of vertebrate retinas engage in GC::AC coupling.Multi-hop synaptic queries of the entire RC1 connectome clearly profiles the coupled amacrine and axonal cells. Photic drive polarities and source bipolar cell class selec-tivities are tightly matched across coupled cells. OFF alpha ganglion cells are coupled to OFF γ+ amacrine cells and transient ON DS ganglion cells are coupled to ON γ+ amacrine cells including a large interstitial axonal cell (IAC). Synaptic tabulations show close matches between the classes of bipolar cells sampled by the coupled amacrine and ganglion cells. Further, both ON and OFF coupling ganglion networks show a common theme: synaptic asymmetry whereby the coupled γ+ neurons are also presynaptic to ganglion cell dendrites from different classes of ganglion cells outside the coupled set. In effect, these heterocellular coupling patterns enable an excited ganglion cell to directly inhibit nearby ganglion cells of different classes. Similarly, coupled γ+ amacrine cells engaged in feedback networks can leverage the additional gain of bipolar cell synapses in shaping the signaling of a spectrum of downstream targets based on their own selective coupling with ganglion cells.


1994 ◽  
Vol 11 (6) ◽  
pp. 1193-1203 ◽  
Author(s):  
Chen-Yu Yang ◽  
Stephen Yazulla

AbstractThe presence of inhibitory bipolar cells in salamander retina was investigated by a comparative analysis of the distribution of glutamate- and GABA-immunoreactivities (GLU-IR; GABA-IR) using a postembedding immunocytochemical method. GLU-IR was found in virtually all photoreceptors, bipolar cells and ganglion cells, neuronal elements that transfer information vertically through the retina. GLU-IR also was found in numerous amacrine cells in the mid and proximal inner nuclear layer as well as in the cytoplasm of horizontal cells, while the nucleus of horizontal cells was either lightly labeled or not labeled at all. GLU-IR was found in the outer plexiform layer and intensely in the inner plexiform layer, in which there was no apparent sublamination. Forty-seven percent of Type IB bipolar cells in the distal inner nuclear layer and 13% of the displaced bipolar cells were GABA-IR. All bipolar cells were also GLU-IR, indicating that GABA-IR bipolar cells were a subset of GLU-IR bipolar cells rather than a separate population. About 12% of the Type IB bipolar cells were moderately GABA-IR and likely comprised a GABAergic subtype. GLU-IR levels in the presumed GABAergic bipolar cells were higher than in other purely GLU-IR bipolar cells suggesting that these GABA-IR bipolar cells are glutamatergic as well. All of the displaced bipolar cells were only lightly GABA-IR, indicating that displaced bipolar cells comprise a more homogeneous class of glutamatergic cell than orthotopic bipolar cells. GAD-IR co-localized with GABA-IR in orthotopic but not displaced bipolar cells, further supporting the idea that some orthotopic bipolar cells are GABAergic. A small proportion of bipolar cells in salamander retina contain relatively high levels of both GABA and glutamate. Co-release of these substances by bipolar cells could contribute to the “push-pull” modulation of ganglion cell responses.


1995 ◽  
Vol 12 (2) ◽  
pp. 345-358 ◽  
Author(s):  
J.H. Brandstätter ◽  
U. Greferath ◽  
T. Euler ◽  
H. Wässle

AbstractDirection-selective (DS) ganglion cells of the mammalian retina have their dendrites in the inner plexiform layer (IPL) confined to two narrow strata. The same strata are also occupied by the dendrites of cholinergic amacrine cells which are probably presynaptic to the DS ganglion cells. GABA is known to play a crucial role in creating DS responses. We examined the types of GABAA receptors expressed by the cholinergic amacrine cells and also those expressed by their presynaptic and postsynaptic neurons, by applying immunocytochemical markers to vertical sections of rat retinas. Double-labelling experiments with antibodies against choline acetyltransferase (ChAT) and specific antibodies against different GABAA receptor subunits were performed. Cholinergic amacrine cells seem to express an unusual combination of GABAA receptor subunits consisting of α2-, β1-, β2/3-, γ2-, and δ-subunits. Bipolar cells, which could provide synaptic input to the DS circuitry, were stained with antibodies against the glutamate transporter GLT-1. The axon terminals of these bipolar cells are narrowly stratified in close proximity to the dendritic plexus of displaced cholinergic amacrine cells. The retinal distribution of synaptoporin, a synaptic vesicle associated protein, was studied. Strong reduction of immunolabelling was observed in the two cholinergic strata. The anatomical findings are discussed in the context of models of the DS circuitry of the mammalian retina.


1991 ◽  
Vol 7 (1-2) ◽  
pp. 49-60 ◽  
Author(s):  
B. B. Boycott ◽  
J. M. Hopkins

AbstractPrimate retinal bipolar cells synapsing with two adjacent cones (2C bipolars) are further described. Their synaptic contacts are either as the central (invaginating) component of the cone triads or as basal (flat) contacts on the membrane of the cone pedicle base. Correspondingly, their axons end either in the b (inner) half or in the a (outer) half of the inner plexiform layer. The shape and size of the axon terminals of 2C bipolars are indistinguishable from those of adjacent midget bipolars. Therefore 2C bipolars, like midget bipolars, probably synapse with midget ganglion cells. Two C bipolars have not been identified as connected to foveal cones. But they are not restricted to the retinal periphery, as has previously been supposed, since they occur, mixed with midget (single cone) bipolars, throughout all parts of the retina from about 2.5 mm to atleast 10.0 mm from the fovea. It is likely that 2C bipolars are a variant of the midget bipolars; and that they contact some members of the same population of cones, instead of the midgets. This paper briefly reviews, and raises some new, problems concerning our current understanding of the synaptic connectivity patterns of the midget, 2C, and diffuse cone bipolar cells.


1999 ◽  
Vol 16 (4) ◽  
pp. 771-779 ◽  
Author(s):  
SILKE HAVERKAMP ◽  
HELGA KOLB ◽  
TODD A. BLUTE ◽  
LUXIANG CAO ◽  
WILLIAM D. ELDRED

Immunocytochemistry was used to reveal a population of bipolar cells that contain γ-atrial natriuretic peptide 1–25 (γ-ANP) in turtle retina. This same antibody was also used in rat retina as a comparative control. The retinas were examined by both conventional light microscopy and confocal microscopy with double-labeling to determine whether protein kinase C-α-like immunoreactivity (PKC-α-LI) was colocalized with the γ-ANP-LI. Some thick sections of turtle retina immunostained with only the γ-ANP antibody were also examined by electron microscopy. In rat, a subpopulation of bipolar cells with axons terminating close to the ganglion cell layer was labeled. Double-labeling experiments indicated that the γ-ANP-LI and PKC-α-LI were colocalized in rat retina, and thus all the bipolar cells with γ-ANP-LI were rod bipolar cells. In turtle, the γ-ANP antibody labeled certain bipolar cells that were characterized by bistratified axon terminals arborizing on the borders of strata S2/3 and S3/4 in the inner plexiform layer (IPL). Double labeling with PKC-α antibody indicated that bipolar cells with γ-ANP-LI were not the same bipolar cell types with PKC-α-LI. Thus, γ-ANP-LI appears to be a new marker for a distinct type of bipolar cell in turtle retina. At the ultrastructural level, the γ-ANP-LI was visible throughout the cytoplasm of the bipolar cells from dendrites to axon terminals. In the outer plexiform layer (OPL), labeled dendrites contacted photoreceptor pedicles almost exclusively at narrow-cleft basal junctions, but infrequently formed the central element at a photoreceptor ribbon synapse. In the IPL, axon terminals with γ-ANP-LI made ribbon synapses onto a combination of amacrine and ganglion cells. Since narrow-cleft basal junctions and photoreceptor ribbon-related junctions are known to be associated with ON-center bipolar cells in turtle, and since the axon terminals of bipolars with γ-ANP-LI stratify primarily in the ON-strata of the IPL, we suggest that these cells are likely to be ON-center cells. It is possible that the γ-ANP may be involved in regulating the activity of Na+/K+ ATPase or in the modulation of cGMP levels.


The structure of the human, but mainly of the rhesus monkey, retina as examined by Golgi-staining techniques is described and interpreted on evidence from both light and electron microscopy. One type of rod bipolar cell and two types of cone bipolar cell are recognized. The rod bipolar is exclusively connected to rods. The midget bipolar is postsynaptic to only one cone but each cone is also presynaptic to a diffuse cone (flat) bipolar. Such flat bipolar cells are in synaptic relationship with about seven cones. No other bipolar cell types have been found. The brush bipolar of Polyak is interpreted as probably a distorted rod bipolar, while Polyak’s centrifugal bipolar is a misinterpretation of the morphology of diffuse amacrine cells. When presumptive centrifugal bipolars were observed they appeared to be a developmental stage of amacrine cells. In the outer plexiform layer two types of horizontal cell have been defined. Each type of horizontal cell has a single axon and two kinds of horizontal cell axon terminals are recognized. In the inner plexiform layer there are two main classes of amacrine cells: the stratified amacrines and the diffuse amacrines. Each class of amacrine has a wide variety of shapes. Polyak’s midget ganglion cell is confirmed and his five other kinds of ganglion cell are classified into diffuse and stratified ganglion cells according to the level at which their dendrites branch within the inner plexiform layer. A fuller summary is given by the diagram and in the legend of figure 98, p. 174. A new type of midget bipolar is described in the Appendix (p. 177).


2002 ◽  
Vol 19 (3) ◽  
pp. 299-305 ◽  
Author(s):  
DAVID W. MARSHAK ◽  
ELIZABETH S. YAMADA ◽  
ANDREA S. BORDT ◽  
WENDY C. PERRYMAN

A labeled ON parasol ganglion cell from a macaque retina was analyzed in serial, ultrathin sections. It received 13% of its input from diffuse bipolar cells. These directed a large proportion of their output to amacrine cells but received a relatively small proportion of their amacrine cell input via feedback synapses. In these respects, they were similar to the DB3 bipolar cells that make synapses onto OFF parasol cells. Bipolar cell axons that contacted the ON parasol cell in stratum 4 of the inner plexiform layer always made synapses onto the dendrite, and therefore, the number of bipolar cell synapses onto these ganglion cells could be estimated reliably by light microscopy in the future. Amacrine cells provided the majority of inputs to the ON parasol cell. Only a few of the presynaptic amacrine cell processes received inputs from the same bipolar cells as the parasol cells, and most of the presynaptic amacrine cell processes did not receive any inputs at all within the series. These findings suggest that most of the inhibitory input to the ON parasol cell originates from other areas of the retina. Amacrine cells presynaptic to the parasol ganglion cell interacted very infrequently with other neurons in the circuit, and therefore, they would be expected to act independently, for the most part.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Jingfei Chen ◽  
Qihui Luo ◽  
Chao Huang ◽  
Wen Zeng ◽  
Ping Chen ◽  
...  

Purpose. To investigate the changes of thickness in each layer, the morphology and density of inner neurons in rhesus monkeys’ retina at various growth stages, thus contribute useful data for further biological studies. Methods. The thickness of nerve fiber layer (NFL), the whole retina, inner plexiform layer (IPL), and outer plexiform layer (OPL) of rhesus monkeys at different ages were observed with hematoxylin and eosin (H&E) staining. The morphology and the density of inner neurons of rhesus monkey retina were detected by immunofluorescence. Results. The retina showed the well-known ten layers, the thickness of each retinal layer in rhesus monkeys at various ages increased rapidly after infant, and the retina was the thickest in adulthood, but the retinal thickness stop growing in senescent. Quantitative analysis showed that the maximum density of inner neurons was reached in adolescent, and then, the density of inner neurons decreased in adults and senescent retinas. And some changes in the morphology of rod bipolar cells have occurred in senescent. Conclusions. The structure of retina in rhesus monkeys is relatively immature at infant, and the inner retina of rhesus monkeys is mature in adolescent, while the thickness of each retinal layer was the most developed in the adult group. There was no significant change in senescence for the thickness of each retinal layer, but the number of the neurons in our study has a decreasing trend and the morphological structure has changed.


2011 ◽  
Vol 28 (3) ◽  
pp. 205-220 ◽  
Author(s):  
MARTIN WILSON ◽  
NICK NACSA ◽  
NATHAN S. HART ◽  
CYNTHIA WELLER ◽  
DAVID I. VANEY

AbstractUsing both NADPH diaphorase and anti-nNOS antibodies, we have identified—from retinal flatmounts—neuronal types in the inner retina of the chicken that are likely to be nitrergic. The two methods gave similar results and yielded a total of 15 types of neurons, comprising 9 amacrine cells, 5 ganglion cells, and 1 centrifugal midbrain neuron. Six of these 15 cell types are ubiquitously distributed, comprising 3 amacrine cells, 2 displaced ganglion cells, and a presumed orthotopic ganglion cell. The remaining nine cell types are regionally restricted within the retina. As previously reported, efferent fibers of midbrain neurons and their postsynaptic partners, the unusual axon-bearing target amacrine cells, are entirely confined to the ventral retina. Also confined to the ventral retina, though with somewhat different distributions, are the “bullwhip” amacrine cells thought to be involved in eye growth, an orthotopic ganglion cell, and two types of large axon-bearing amacrine cells whose dendrites and axons lie in stratum 1 of the inner plexiform layer (IPL). Intracellular fills of these two cell types showed that only a minority of otherwise morphologically indistinguishable neurons are nitrergic. Two amacrine cells that branch throughout the IPL are confined to an equatorial band, and one small-field orthotopic ganglion cell that branches in the proximal IPL is entirely dorsal. These findings suggest that the retina uses different processing on different regions of the visual image, though the benefit of this is presently obscure.


Sign in / Sign up

Export Citation Format

Share Document