scholarly journals Parkinson’s disease uncovers an underlying sensitivity of subthalamic nucleus neurons to beta-frequency cortical input

2019 ◽  
Author(s):  
Magdalena K. Baaske ◽  
Eszter Kormann ◽  
Abbey B. Holt ◽  
Alessandro Gulberti ◽  
Colin G. McNamara ◽  
...  

AbstractAbnormally sustained beta-frequency synchronisation between the motor cortex and subthalamic nucleus (STN) is associated with motor symptoms in Parkinson’s disease (PD). It is currently unclear whether STN neurons have a preference for beta-frequency input (12-35Hz), rather than cortical input at other frequencies, and how such a preference would arise following dopamine depletion. To address this question, we combined analysis of cortical and STN recordings from awake PD patients undergoing deep brain stimulation surgery with recordings of identified STN neurons in anaesthetised rats. In PD patients, we demonstrate that a subset of STN neurons are strongly and selectively sensitive to fluctuations of cortical beta oscillations over time, linearly increasing their phase-locking strength with respect to full range of instantaneous amplitude. In rats, we probed the frequency response of STN neurons more precisely, by recording spikes evoked by short bursts of cortical stimulation with variable frequency (4-40Hz) and constant amplitude. In both healthy and dopamine-depleted animals, only beta-frequency stimulation selectively led to a progressive reduction in the variability of spike timing through the stimulation train. We hypothesize, that abnormal activation of the indirect pathway, via dopamine depletion and/or cortical stimulation, could trigger an underlying sensitivity of the STN microcircuit to beta-frequency input.

2020 ◽  
Vol 146 ◽  
pp. 105119
Author(s):  
Magdalena K. Baaske ◽  
Eszter Kormann ◽  
Abbey B. Holt ◽  
Alessandro Gulberti ◽  
Colin G. McNamara ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammad Daneshzand ◽  
Miad Faezipour ◽  
Buket D. Barkana

To investigate how different types of neurons can produce well-known spiking patterns, a new computationally efficient model is proposed in this paper. This model can help realize the neuronal interconnection issues. The model can demonstrate various neuronal behaviors observed in vivo through simple parameter modification. The behaviors include tonic and phasic spiking, tonic and phasic bursting, class 1 and class 2 excitability, rebound spike, rebound burst, subthreshold oscillation, and accommodated spiking along with inhibition neuron responses. Here, we investigate the neuronal spiking patterns in Parkinson’s disease through our proposed model. Abnormal pattern of subthalamic nucleus in Parkinson’s disease can be studied through variations in the shape and frequency of firing patterns. Our proposed model introduces mathematical equations, where these patterns can be derived and clearly differentiated from one another. The irregular and arrhythmic behaviors of subthalamic nucleus firing pattern under normal conditions can easily be transformed to those caused by Parkinson’s disease through simple parameter modifications in the proposed model. This model can explicitly show the change of neuronal activity patterns in Parkinson’s disease, which may eventually lead to effective treatment with deep brain stimulation devices.


Brain ◽  
2020 ◽  
Vol 143 (2) ◽  
pp. 582-596 ◽  
Author(s):  
Saed Khawaldeh ◽  
Gerd Tinkhauser ◽  
Syed Ahmar Shah ◽  
Katrin Peterman ◽  
Ines Debove ◽  
...  

Abstract Whilst exaggerated bursts of beta frequency band oscillatory synchronization in the subthalamic nucleus have been associated with motor impairment in Parkinson’s disease, a plausible mechanism linking the two phenomena has been lacking. Here we test the hypothesis that increased synchronization denoted by beta bursting might compromise information coding capacity in basal ganglia networks. To this end we recorded local field potential activity in the subthalamic nucleus of 18 patients with Parkinson’s disease as they executed cued upper and lower limb movements. We used the accuracy of local field potential-based classification of the limb to be moved on each trial as an index of the information held by the system with respect to intended action. Machine learning using the naïve Bayes conditional probability model was used for classification. Local field potential dynamics allowed accurate prediction of intended movements well ahead of their execution, with an area under the receiver operator characteristic curve of 0.80 ± 0.04 before imperative cues when the demanded action was known ahead of time. The presence of bursts of local field potential activity in the alpha, and even more so, in the beta frequency band significantly compromised the prediction of the limb to be moved. We conclude that low frequency bursts, particularly those in the beta band, restrict the capacity of the basal ganglia system to encode physiologically relevant information about intended actions. The current findings are also important as they suggest that local subthalamic activity may potentially be decoded to enable effector selection, in addition to force control in restorative brain-machine interface applications.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2265
Author(s):  
Feras Altwal ◽  
Connor Moon ◽  
Anthony R. West ◽  
Heinz Steiner

Levodopa (L-DOPA) treatment in Parkinson’s disease is limited by the emergence of L-DOPA-induced dyskinesia. Such dyskinesia is associated with aberrant gene regulation in neurons of the striatum, which is caused by abnormal dopamine release from serotonin terminals. Previous work showed that modulating the striatal serotonin innervation with selective serotonin reuptake inhibitors (SSRIs) or 5-HT1A receptor agonists could attenuate L-DOPA-induced dyskinesia. We investigated the effects of a novel serotonergic agent, vilazodone, which combines SSRI and 5-HT1A partial agonist properties, on L-DOPA-induced behavior and gene regulation in the striatum in an animal model of Parkinson’s disease. After unilateral dopamine depletion by 6-hydroxydopamine (6-OHDA), rats received repeated L-DOPA treatment (5 mg/kg) alone or in combination with vilazodone (10 mg/kg) for 3 weeks. Gene regulation was then mapped throughout the striatum using in situ hybridization histochemistry. Vilazodone suppressed the development of L-DOPA-induced dyskinesia and turning behavior but did not interfere with the prokinetic effects of L-DOPA (forelimb stepping). L-DOPA treatment drastically increased the expression of dynorphin (direct pathway), 5-HT1B, and zif268 mRNA in the striatum ipsilateral to the lesion. These effects were inhibited by vilazodone. In contrast, vilazodone had no effect on enkephalin expression (indirect pathway) or on gene expression in the intact striatum. Thus, vilazodone inhibited L-DOPA-induced gene regulation selectively in the direct pathway of the dopamine-depleted striatum, molecular changes that are considered critical for L-DOPA-induced dyskinesia. These findings position vilazodone, an approved antidepressant, as a potential adjunct medication for the treatment of L-DOPA-induced motor side effects.


2020 ◽  
Vol 10 (4) ◽  
pp. 1541-1549
Author(s):  
Seok Jong Chung ◽  
Sangwon Lee ◽  
Han Soo Yoo ◽  
Yang Hyun Lee ◽  
Hye Sun Lee ◽  
...  

Background: Striatal dopamine deficits play a key role in the pathogenesis of Parkinson’s disease (PD), and several non-motor symptoms (NMSs) have a dopaminergic component. Objective: To investigate the association between early NMS burden and the patterns of striatal dopamine depletion in patients with de novo PD. Methods: We consecutively recruited 255 patients with drug-naïve early-stage PD who underwent 18F-FP-CIT PET scans. The NMS burden of each patient was assessed using the NMS Questionnaire (NMSQuest), and patients were divided into the mild NMS burden (PDNMS-mild) (NMSQuest score <6; n = 91) and severe NMS burden groups (PDNMS-severe) (NMSQuest score >9; n = 90). We compared the striatal dopamine transporter (DAT) activity between the groups. Results: Patients in the PDNMS-severe group had more severe parkinsonian motor signs than those in the PDNMS-mild group, despite comparable DAT activity in the posterior putamen. DAT activity was more severely depleted in the PDNMS-severe group in the caudate and anterior putamen compared to that in the PDMNS-mild group. The inter-sub-regional ratio of the associative/limbic striatum to the sensorimotor striatum was lower in the PDNMS-severe group, although this value itself lacked fair accuracy for distinguishing between the patients with different NMS burdens. Conclusion: This study demonstrated that PD patients with severe NMS burden exhibited severe motor deficits and relatively diffuse dopamine depletion throughout the striatum. These findings suggest that the level of NMS burden could be associated with distinct patterns of striatal dopamine depletion, which could possibly indicate the overall pathological burden in PD.


Sign in / Sign up

Export Citation Format

Share Document