scholarly journals A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin

2019 ◽  
Author(s):  
Sean M. Santos ◽  
John L. Hartman

AbstractBackgroundSaccharomyces cerevisiae represses respiration in the presence of adequate glucose, mimicking the Warburg effect, termed aerobic glycolysis. We conducted yeast phenomic experiments to characterize differential doxorubicin-gene interaction, in the context of respiration vs. glycolysis. The resulting systems level biology about doxorubicin cytotoxicity, including the influence of the Warburg effect, was integrated with cancer pharmacogenomics data to identify potentially causal correlations between differential gene expression and anti-cancer efficacy.MethodsQuantitative high-throughput cell array phenotyping (Q-HTCP) was used to measure cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library, treated with escalating doxorubicin concentrations in fermentable and non-fermentable media. Doxorubicin-gene interaction was quantified by departure of the observed and expected phenotypes for the doxorubicin-treated mutant strain, with respect to phenotypes for the untreated mutant strain and both the treated and untreated reference strain. Recursive expectation-maximization clustering (REMc) and Gene Ontology-based analyses of interactions were used to identify functional biological modules that buffer doxorubicin cytotoxicity, and to characterize their Warburg-dependence. Yeast phenomic data was applied to cancer cell line pharmacogenomics data to predict differential gene expression that causally influences the anti-tumor efficacy, and potentially the anthracycline-associated host toxicity, of doxorubicin.ResultsDoxorubicin cytotoxicity was greater with respiration, suggesting the Warburg effect can influence therapeutic efficacy. Accordingly, doxorubicin drug-gene interaction was more extensive with respiration, including increased buffering by cellular processes related to chromatin organization, protein folding and modification, translation reinitiation, spermine metabolism, and fatty acid beta-oxidation. Pathway enrichment was less notable for glycolysis-specific buffering. Cellular processes exerting influence relatively independently, with respect to Warburg status, included homologous recombination, sphingolipid homeostasis, telomere tethering at nuclear periphery, and actin cortical patch localization. Causality for differential gene expression associated with doxorubicin cytotoxicity in tumor cells was predicted within the biological context of the phenomic model.ConclusionsWarburg status influences the genetic requirements to buffer doxorubicin toxicity. Yeast phenomics provides an experimental platform to model the complexity of gene interaction networks that influence human disease phenotypes, as in this example of chemotherapy response. High-resolution, systems level yeast phenotyping is useful to predict the biological influence of functional variation on disease, offering the potential to fundamentally advance precision medicine.

2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Sean M. Santos ◽  
John L. Hartman

Abstract Background The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context. We analyzed human homologs of yeast genes exhibiting gene-doxorubicin interaction in cancer pharmacogenomics data to predict causality for differential gene expression associated with doxorubicin cytotoxicity in cancer cells. This analysis suggested conserved cellular responses to doxorubicin due to influences of homologous recombination, sphingolipid homeostasis, telomere tethering at nuclear periphery, actin cortical patch localization, and other gene functions. Conclusions Warburg status alters the genetic network required for yeast to buffer doxorubicin toxicity. Integration of yeast phenomic and cancer pharmacogenomics data suggests evolutionary conservation of gene-drug interaction networks and provides a new experimental approach to model their influence on chemotherapy response. Thus, yeast phenomic models could aid the development of precision oncology algorithms to predict efficacious cytotoxic drugs for cancer, based on genetic and metabolic profiles of individual tumors.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 770 ◽  
Author(s):  
Santos ◽  
Icyuz ◽  
Pound ◽  
William ◽  
Guo ◽  
...  

Knowledge about synthetic lethality can be applied to enhance the efficacy of anticancer therapies in individual patients harboring genetic alterations in their cancer that specifically render it vulnerable. We investigated the potential for high-resolution phenomic analysis in yeast to predict such genetic vulnerabilities by systematic, comprehensive, and quantitative assessment of drug–gene interaction for gemcitabine and cytarabine, substrates of deoxycytidine kinase that have similar molecular structures yet distinct antitumor efficacy. Human deoxycytidine kinase (dCK) was conditionally expressed in the Saccharomyces cerevisiae genomic library of knockout and knockdown (YKO/KD) strains, to globally and quantitatively characterize differential drug–gene interaction for gemcitabine and cytarabine. Pathway enrichment analysis revealed that autophagy, histone modification, chromatin remodeling, and apoptosis-related processes influence gemcitabine specifically, while drug–gene interaction specific to cytarabine was less enriched in gene ontology. Processes having influence over both drugs were DNA repair and integrity checkpoints and vesicle transport and fusion. Non-gene ontology (GO)-enriched genes were also informative. Yeast phenomic and cancer cell line pharmacogenomics data were integrated to identify yeast–human homologs with correlated differential gene expression and drug efficacy, thus providing a unique resource to predict whether differential gene expression observed in cancer genetic profiles are causal in tumor-specific responses to cytotoxic agents.


2019 ◽  
Author(s):  
Sean M. Santos ◽  
Mert Icyuz ◽  
Ilya Pound ◽  
Doreen William ◽  
Jingyu Guo ◽  
...  

AbstractKnowledge about synthetic lethality can be applied to enhance the efficacy of anti-cancer therapies in individual patients harboring genetic alterations in their cancer that specifically render it vulnerable. We investigated the potential for high-resolution phenomic analysis in yeast to predict such genetic vulnerabilities by systematic, comprehensive, and quantitative assessment of drug-gene interaction for gemcitabine and cytarabine, substrates of deoxycytidine kinase that have similar molecular structures yet distinct anti-tumor efficacy. Human deoxycytidine kinase (dCK) was conditionally expressed in the S. cerevisiae genomic library of knockout and knockdown (YKO/KD) strains, to globally and quantitatively characterize differential drug-gene interaction for gemcitabine and cytarabine. Pathway enrichment analysis revealed that autophagy, histone modification, chromatin remodeling, and apoptosis-related processes influence gemcitabine specifically, while drug-gene interaction specific to cytarabine was less enriched in Gene Ontology. Processes having influence over both drugs were DNA repair and integrity checkpoints and vesicle transport and fusion. Non-GO-enriched genes were also informative. Yeast phenomic and cancer cell line pharmacogenomics data were integrated to identify yeast-human homologs with correlated differential gene expression and drug-efficacy, thus providing a unique resource to predict whether differential gene expression observed in cancer genetic profiles are causal in tumor-specific responses to cytotoxic agents.


Sign in / Sign up

Export Citation Format

Share Document