scholarly journals Unmasking of novel mutations within XK gene that could be used as Diagnostic Markers to Predict McLeod syndrome: Using in silico analysis

2019 ◽  
Author(s):  
Mujahed I. Mustafa ◽  
Mohamed A. Hassan

AbstractBackgroundMcLeod neuroacanthocytosis syndrome is a rare X-linked recessive multisystem disorder affecting the peripheral and central nervous systems, red blood cells, and internal organs.MethodsWe carried out in silico analysis of structural effect of each SNP using different bioinformatics tools to predict substitution influence on protein structural and functional level.Result2 novel mutations out of 104 nsSNPs that are found to be deleterious effect on the XK structure and function.ConclusionThe present study provided a novel insight into the understanding of McLeod syndrome, SNPs occurring in coding and non-coding regions, may lead to RNA alterations and should be systematically verified. Functional studies can gain from a preliminary multi-step approach, such as the one proposed here; we prioritize SNPs for further genetic mapping studies. This will be a valuable resource for neurologists, hematologists, and clinical geneticists on this rare and debilitating disease.

2018 ◽  
Author(s):  
Mujahed I. Mustafa ◽  
Enas A. Osman ◽  
Abdelrahman H. Abdelmoneiom ◽  
Dania M. Hassn ◽  
Hadeel M. Yousif ◽  
...  

AbstractBackgroundFamilial dysautonomia (FD) is a rare neurodevelopmental genetic disorder within the larger classification of hereditary sensory and autonomic neuropathies. We aimed to identify the pathogenic SNPs in IKBKAP gene by computational analysis software’s, and to determine the structure, function and regulation of their respective proteins.Materials and MethodsWe carried out in silico analysis of structural effect of each SNP using different bioinformatics tools to predict SNPs influence on protein structure and function.Result41 novel mutations out of 973 nsSNPs that are found be deleterious effect on the IKBKAP structure and function.ConclusionThis is the first in silico analysis in IKBKAP gene to prioritize SNPs for further genetic studies.


2019 ◽  
Author(s):  
Thwayba A. Mahmoud ◽  
Abdelrahman H. Abdelmoneim ◽  
Naseem S. Murshed ◽  
Zainab O. Mohammed ◽  
Dina T. Ahmed ◽  
...  

AbstractBackgroundRetinitis Pigmentosa (RP) refers to a group of inherited disorders characterized by the death of photoreceptor cells leading to blindness. The aim of this study is to identify the pathogenic SNPs in the IDH3A gene and their effect on the structure and function of the protein.Methodwe used different bioinformatics tools to predict the effect of each SNP on the structure and function of the protein.Result20 deleterious SNPs out of 178 were found to have a damaging effect on the protein structure and function.Conclusionthis is the first in silico analysis of IDH3A gene and 20 novel mutations were found using different bioinformatics tools, and they could be used as diagnostic markers for Retinitis Pigmentosa.


2019 ◽  
Author(s):  
Mujahed I. Mustafa ◽  
Abdelrahman H. Abdelmoneim ◽  
Nafisa M. Elfadol ◽  
Soada A. osman ◽  
Tebyan A. Abdelhameed ◽  
...  

AbstractBackgroundHereditary pancreatitis (HP) is an autosomal dominant disorder with incomplete penetrance characterized by recurring episodes of severe abdominal pain often presenting in childhood. The comprehensive in silico analysis of coding SNPs, and their functional impacts on protein level, still remains unknown. In this study, we aimed to identify the pathogenic SNPs in PRSS1 gene by computational analysis approach.Materials and MethodsWe carried out in silico analysis of structural effect of each SNP using different bioinformatics tools to predict Single-nucleotide polymorphisms influence on protein structure and function.ResultTwo novel mutations out of 339 nsSNPs that are found be deleterious effect on the PRSS1 structure and function.ConclusionThis is the first in silico analysis in PRSS1 gene, which will be a valuable resource for future targeted mechanistic and population-based studies.


2019 ◽  
Author(s):  
Abdelrahman H. Abdelmoneim ◽  
Alaa I. Mohammed ◽  
Esraa O. Gadim ◽  
Mayada A.Mohammed ◽  
Sara H. Hamza ◽  
...  

AbstractBack groundhyperparathyroidism-jaw tumor (HPT-JT) is an autosomal dominant disorder with variable expression, with an estimated prevalence of 6.7 per 1,000 population. Genetic testing for predisposing CDC73 (HRPT2) mutations has been an important clinical advance, aimed at early detection and/or treatment to prevent advanced disease. The aim of this study is to assess the effect of SNPs on CDC73 structure and function using different bioinformatics tools.MethodComputational analysis using eight different in-silico tools including SIFT, PROVEAN, PolyPhen-2, SNAP2, PhD-SNP, SNPs&GO, PMut and Imutant were used to identify the impact on the structure and/or function of CDC73 gene that might be causing jaw tumour.ResultsFrom (733) SNPs identified in the CDC73 gene we found that only Eleven were deleterious to the function and structure of protein and expected to cause syndrome.ConclusionEleven substantial genetic/molecular aberrations in CDC73 gene were identified that could serve as actionable targets for chemotherapeutic intervention in patients whose disease is no longer surgically curable.


2020 ◽  
Author(s):  
Abdelrahman H. Abdelmoneim ◽  
Arwa A. Satti ◽  
Miysaa I. Abdelmageed ◽  
Naseem S. Murshed ◽  
Nafisa M. Elfadol ◽  
...  

AbstractBackgroundPeters’-plus syndrome is a rare autosomal recessive disorder, which is characterized by a specific malformation of the eye that includes corneal opaqueness and iridocorneal adhesions (Peters’ anomaly) along with other systemic manifestations. Furthermore, various researches report the association between B3GALTL gene and Peters’-plus syndrome. In the current work we aim to analyze the deleterious SNPs in B3GALTL gene that predispose to Peters’-plus syndrome.Methodthe associated SNPs of the coding region of the B3GALTL gene was acquired from National Center for Biotechnology Information and then analyzed by eight softwares (SIFT, Polyphen2, Proven, SNAP2, SNP@GO, PMut, Imutant and Mupro). The physiochemical properties of the resulted SNPs were then analyzed by Hope project website and visualized by chimera software.ResultThirteen novel mutations (Y172C, A222V, C260R, C260Y, D349G, I354K, R377C, G379C, G393R, G393E, G395E, G425E, R445W) are discovered in B3GALTL gene to cause deleterious effects leading to the development of Peters’-plus syndrome.ConclusionThirteen novel mutations in B3GALTL gene are predicted to cause Peters’-plus syndrome.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2498-2498
Author(s):  
Shreerang Sirdesai ◽  
Kerryn Weekes ◽  
Asif Alam ◽  
Huyen A Tran ◽  
Christopher Barnes ◽  
...  

Abstract Aim: Hemophilia A (HA) is caused by abnormalities in the Factor VIII gene. Certain abnormalities correlate with disease severity. Here, we report the genotype-phenotype correlation for all Victorian HA patients. Methods: Using the Australian Bleeding Disorders Registry, Victorian HA patients were identified. All genetic testing was conducted at Southern Health. The testing algorithm is summarized in Figure 1. Mutations were compared with the list of known Factor 8 mutations on the Champ and EAHAD F8 Variant Databases. A PubMed search was undertaken for any mutations not on either database. If this too was unrevealing, the mutation was designated novel. In-silico analysis was conducted on all novel mutations using three open-access, online prediction tools: a) Mutation Taster; b) Poly-Phen 2; c) Human Splice Site Predictor. Results: 318 patients with matched clinical and genetic records were identified. 275 had known FVIII mutations and 36 novel FVIII mutations were discovered. Eight patients (3%) had no mutations identified. (Table 1) In severe HA the intron-22 inversion was the most common mutation (47/122, 38%). Missense mutations predominated in mild and moderate HA. Inhibitors were present in 44/318 patients, the majority of whom had 26/44 (59%) severe HA. 20/36 novel mutations (55%) were associated with severe HA, 12/36 (33%) with mild HA and 4/36 (11%) with a moderate HA. Novel mutations associated with non-severe phenotypes were mostly missense mutations (15/16); More diversity was seen in the novel mutations causing a severe HA with a fairly even distribution of mutations: missense (7/20), nonsense (4/20) and small deletions and insertions (8/20). One large deletion involving a 6.5kb region of exon 26, as well as one duplication of exons 7 to 9 - was seen in the severe group. In-silico analysis predicted that all novel severe HA mutations were likely to be pathogenic.Inhibitors were seen in 7 patients with novel mutations. Of the 36 novel mutations we described, 9/36 (25%) were seen in other family members - often female carriers. All 9 mutations caused a severe phenotype which is not unexpected given that the screening and testing of family members would be unlikely to take place in patients who have a mild phenotype and rarely require supportive medical care Conclusion: This study adds 36 novel mutations to the currently known FVIII haemophilic mutations. It also confirms that the frequency and correlative clinical severity of known genetic mutations in the Victorian HA cohort is similar to that described internationally. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Nuha A. Mahmoud ◽  
Dina T. Ahmed ◽  
Zainab O. Mohammed ◽  
Fatima A. Altyeb ◽  
Mujahed I. Mustafa ◽  
...  

BackgroundHyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is an autosomal recessive inborn error of the urea cycle. It is caused by mutations in the SLC25A15 gene that codes the mitochondrial ornithine transporter. The aim of this study is to detect and identify the pathogenic SNPs in SLC25A15 gene through a combination set of bioinformatics tools and their effect on the structure and function of the protein.MethodsThe deleterious SNPs in SLC25A15 are detected by various bioinformatics tools, with addition to identifying their effects on the structure and function of this gene.Results20 deleterious SNPs out 287of were found to have their own damaging effects on the structure and function of the SLC25A15 gene.ConclusionThis study is the first in silico analysis of SLC25A15 using a selection of bioinformatics tools to detect functional and structural effects of deleterious SNPs. Finding the pathogenic SNPs is a promising start to innovate new, useful SNP diagnostic markers for medical testing and for safer novel therapies specifically targeting mutant SLC25A15.


Author(s):  
Cambyz Irajie ◽  
Milad Mohkam ◽  
Navid Nezafat ◽  
Fatemeh Mohammadi ◽  
Younes Ghasemi

Nattokinase or subtilisin NAT (EC 3.4.21.62) is one of the most remarkable enzymes produced by Bacillus subtilis sp. Natto, which posses direct fibrinolytic activity. The aim of this study is in silico analysis of Nattokinase structure and function. The three-dimensional structure of serine protease Nattokinase from Bacillus subtilis sp. natto was determined using homology modeling performed by Geno3D2 Web Server and refined by ModRefiner. The obtained models were validated via programs such as RAMPAGE, ERRAT, 3D Match and verify 3D for consistency; moreover, functional analysis performed by PFP from Kihara Bioinformatics laboratory. RAMPAGE analysis showed that 96.7% of the residues are located in the favored region, 3.0% in allowed region and 0.4% in outlier region of the Ramachandran plot. The verify 3D value of 0.73 indicates that the environmental sketch of the model is fine. SOPMA and PSIPRED were exploited for computation of the secondary structural properties of serine protease Nattokinase. Active site determination via AADS suggested that this enzyme can be applied as a potent enzyme for cardiovascular therapy. However, these results should be more confirmed by wet lab researches for designing the more active enzyme for better functions on its fibrinolysis activity.


2019 ◽  
Author(s):  
Abdelrahman H. Abdelmoneim ◽  
Asia M. Elrashied ◽  
Alaa I. Mohammed ◽  
Sara A. Mirghani ◽  
Rania E. Osman ◽  
...  

AbstractBackgroundWoodhouse-Sakati Syndrome refers to a group of inherited disorders characterized by alopecia, hypogonadism, diabetes mellitus, hypothyroidism and progressive extrapyramidal signs. The aim of this study is to identify the pathogenic SNPs in theDCAF17gene with their related mciroRNAs and their effect on the structure and function of the protein.Material and MethodsWe used different bioinformatics tools to predict the effect of each SNP on the structure and function of the protein. After that we defined the miRNAs founded in the 3′-UTR region on theDCAF17gene and studied the annotations relative to it.ResultsTen deleterious SNPs out of 339 were found to have a damaging effect on the protein structure and function, with one significant micoRNA in the 3′-UTR region.ConclusionThis was the first in silico analysis ofDCAF17gene, in which 10 novel mutations were found using different bioinformatics tools that could be used as a diagnostic markers for Woodhouse-Sakati syndrome, with one relevant microRNA that can regulate the function of the protein.


Sign in / Sign up

Export Citation Format

Share Document