scholarly journals Comprehensive in silico Analysis of IKBKAP gene that could potentially cause Familial dysautonomia

2018 ◽  
Author(s):  
Mujahed I. Mustafa ◽  
Enas A. Osman ◽  
Abdelrahman H. Abdelmoneiom ◽  
Dania M. Hassn ◽  
Hadeel M. Yousif ◽  
...  

AbstractBackgroundFamilial dysautonomia (FD) is a rare neurodevelopmental genetic disorder within the larger classification of hereditary sensory and autonomic neuropathies. We aimed to identify the pathogenic SNPs in IKBKAP gene by computational analysis software’s, and to determine the structure, function and regulation of their respective proteins.Materials and MethodsWe carried out in silico analysis of structural effect of each SNP using different bioinformatics tools to predict SNPs influence on protein structure and function.Result41 novel mutations out of 973 nsSNPs that are found be deleterious effect on the IKBKAP structure and function.ConclusionThis is the first in silico analysis in IKBKAP gene to prioritize SNPs for further genetic studies.

2019 ◽  
Author(s):  
Mujahed I. Mustafa ◽  
Mohamed A. Hassan

AbstractBackgroundMcLeod neuroacanthocytosis syndrome is a rare X-linked recessive multisystem disorder affecting the peripheral and central nervous systems, red blood cells, and internal organs.MethodsWe carried out in silico analysis of structural effect of each SNP using different bioinformatics tools to predict substitution influence on protein structural and functional level.Result2 novel mutations out of 104 nsSNPs that are found to be deleterious effect on the XK structure and function.ConclusionThe present study provided a novel insight into the understanding of McLeod syndrome, SNPs occurring in coding and non-coding regions, may lead to RNA alterations and should be systematically verified. Functional studies can gain from a preliminary multi-step approach, such as the one proposed here; we prioritize SNPs for further genetic mapping studies. This will be a valuable resource for neurologists, hematologists, and clinical geneticists on this rare and debilitating disease.


2019 ◽  
Author(s):  
Nuha A. Mahmoud ◽  
Dina T. Ahmed ◽  
Zainab O. Mohammed ◽  
Fatima A. Altyeb ◽  
Mujahed I. Mustafa ◽  
...  

BackgroundHyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is an autosomal recessive inborn error of the urea cycle. It is caused by mutations in the SLC25A15 gene that codes the mitochondrial ornithine transporter. The aim of this study is to detect and identify the pathogenic SNPs in SLC25A15 gene through a combination set of bioinformatics tools and their effect on the structure and function of the protein.MethodsThe deleterious SNPs in SLC25A15 are detected by various bioinformatics tools, with addition to identifying their effects on the structure and function of this gene.Results20 deleterious SNPs out 287of were found to have their own damaging effects on the structure and function of the SLC25A15 gene.ConclusionThis study is the first in silico analysis of SLC25A15 using a selection of bioinformatics tools to detect functional and structural effects of deleterious SNPs. Finding the pathogenic SNPs is a promising start to innovate new, useful SNP diagnostic markers for medical testing and for safer novel therapies specifically targeting mutant SLC25A15.


2019 ◽  
Author(s):  
Thwayba A. Mahmoud ◽  
Abdelrahman H. Abdelmoneim ◽  
Naseem S. Murshed ◽  
Zainab O. Mohammed ◽  
Dina T. Ahmed ◽  
...  

AbstractBackgroundRetinitis Pigmentosa (RP) refers to a group of inherited disorders characterized by the death of photoreceptor cells leading to blindness. The aim of this study is to identify the pathogenic SNPs in the IDH3A gene and their effect on the structure and function of the protein.Methodwe used different bioinformatics tools to predict the effect of each SNP on the structure and function of the protein.Result20 deleterious SNPs out of 178 were found to have a damaging effect on the protein structure and function.Conclusionthis is the first in silico analysis of IDH3A gene and 20 novel mutations were found using different bioinformatics tools, and they could be used as diagnostic markers for Retinitis Pigmentosa.


2019 ◽  
Author(s):  
Mujahed I. Mustafa ◽  
Abdelrahman H. Abdelmoneim ◽  
Nafisa M. Elfadol ◽  
Soada A. osman ◽  
Tebyan A. Abdelhameed ◽  
...  

AbstractBackgroundHereditary pancreatitis (HP) is an autosomal dominant disorder with incomplete penetrance characterized by recurring episodes of severe abdominal pain often presenting in childhood. The comprehensive in silico analysis of coding SNPs, and their functional impacts on protein level, still remains unknown. In this study, we aimed to identify the pathogenic SNPs in PRSS1 gene by computational analysis approach.Materials and MethodsWe carried out in silico analysis of structural effect of each SNP using different bioinformatics tools to predict Single-nucleotide polymorphisms influence on protein structure and function.ResultTwo novel mutations out of 339 nsSNPs that are found be deleterious effect on the PRSS1 structure and function.ConclusionThis is the first in silico analysis in PRSS1 gene, which will be a valuable resource for future targeted mechanistic and population-based studies.


2019 ◽  
Author(s):  
Abdelrahman H. Abdelmoneim ◽  
Mujahed I. Mustafa ◽  
Thwayba A. Mahmoud ◽  
Naseem S. Murshed ◽  
Mohamed A. Hassan

Abstract:Background:The X-linked hyper-immunoglobulin M syndrome (XHIGM) is a rare, inherited immune deficiency disorder. It is more common in males. Characterized by elevated serum IgM levels and low to undetectable levels of serum IgG, IgA and IgE. Hyper-IgM syndrome is caused by mutations in the CD40LG gene. Located in human Xq26. CD40LG acts as an immune modulator in activated T cells.Method:We used different bioinformatics tools to predict the effect of each SNP on the structure and function of the protein.Result:8 novel SNPs out of 233 were found to have most deleterious effect on the protein structure and function. While modeling of nsSNPs was studied by Project HOPE software.Conclusion:Better understanding of Hyper-IgM syndrome caused by mutations in CD40LG gene was achieved using in silico analysis. This is the first in silico functional analysis of CD40LG gene and 8 novel mutations were found using different bioinformatics tools, and they could be used as diagnostic markers for hyper-IgM syndrome. These 8 novel SNPs may be important candidates for the cause of different types of human diseases by CD40LG gene.


2016 ◽  
Vol 32 ◽  
pp. 41-61 ◽  
Author(s):  
Manica Negahdaripour ◽  
Navid Nezafat ◽  
Younes Ghasemi

2019 ◽  
Author(s):  
Sahar G. Elbager ◽  
Abier A. Makkawi ◽  
Hadeel A. Mohamed ◽  
Fauzia A. Abdelrahman ◽  
Lamia H. Osman ◽  
...  

AbstractIntroductionThe proto-oncogene (MPL) gen encodes the receptor for thrombopoietin (TPO-R), a member of hematopoietic receptor superfamily. Thrombopoietin (TPO), the primary cytokine regulating self-renewal of hematopoietic stem cells, thrombopoiesis and megakaryocytopoiesis. TPO binding to TPO-R induces activation of Janus Kinase 2 (JAK2). Activated JAK2 triggers the activation of downstream positive signaling pathways, leading to the survival, proliferation, and differentiation of hematopoietic cells. Mutations in MPL gene possibly will alter the normal regulatory mechanisms. Numerous MPL mutations have been observed in various hematopoietic cancers such as essential thrombocythemia and primary myelofibrosis and leukemias. In this study, we performed a comprehensive in silico analysis of the functional and structural impact of non-synonymous (nsSNP) that are deleterious to TPO-R structure and function.MethodologyThe data on human MPL gene was retrieved from dbSNP/NCBI. Nine prediction algorithms; SIFT, Polyphen, PROVEAN, SNAP2, Condel, PhD-SNP, I-Mutant, Mutpred. RaptorX and Chimera were used to analyzing the effect of nsSNPs on functions and structure of the TPO-R. STRING and KEGG database were used for TPO-R protein-protein interaction.Results and DiscussionAs per dbSNP database, the human MPL gene contained 445 missense mutations. A total 5 nsSNPs (D295G, R257C, Y252H, R537W and D128Y) were predicted to have the most damaging effects on TPO-R structure and function. STRING and KEGG revealed that MPL had strong interactions with proteins that involved in cell growth, apoptosis, signal transduction pathway, some cancers pathways such as colorectal cancer, lung cancer, pancreas cancers, and skin cancer. A literature search revealed that Y252H has contribute to the development of essential thrombocythemia.ConclusionThese in silico predictions will provide useful information in selecting the target SNPs that are likely to have functional impact on the TPO-R and moreover could act as potential targets in genetic association studies. Keywords: In Silico analyses; JAK2; Missense Variants; MPL gene; Thrombopoietin (TPO); Single nucleotide polymorphism (SNP).


2020 ◽  
Vol 8 (5) ◽  
pp. 723
Author(s):  
Guillermo Blanco ◽  
Lorena Ruiz ◽  
Hector Tamés ◽  
Patricia Ruas-Madiedo ◽  
Florentino Fdez-Riverola ◽  
...  

Bifidobacteria are among the most abundant microorganisms inhabiting the intestine of humans and many animals. Within the genus Bifidobacterium, several beneficial effects have been attributed to strains belonging to the subspecies Bifidobacterium longum subsp. longum and Bifidobacterium longum subsp. infantis, which are often found in infants and adults. The increasing numbers of sequenced genomes belonging to these two subspecies, and the availability of novel computational tools focused on predicting glycolytic abilities, with the aim of understanding the capabilities of degrading specific carbohydrates, allowed us to depict the potential glycoside hydrolases (GH) of these bacteria, with a focus on those GH profiles that differ in the two subspecies. We performed an in silico examination of 188 sequenced B. longum genomes and depicted the commonly present and strain-specific GHs and GH families among representatives of this species. Additionally, GH profiling, genome-based and 16S rRNA-based clustering analyses showed that the subspecies assignment of some strains does not properly match with their genetic background. Furthermore, the analysis of the potential GH component allowed the distinction of clear GH patterns. Some of the GH activities, and their link with the two subspecies under study, are further discussed. Overall, our in silico analysis poses some questions about the suitability of considering the GH activities of B. longum subsp. longum and B. longum subsp. infantis to gain insight into the characterization and classification of these two subspecies with probiotic interest.


2019 ◽  
Author(s):  
Abdelrahman H. Abdelmoneim ◽  
Alaa I. Mohammed ◽  
Esraa O. Gadim ◽  
Mayada A.Mohammed ◽  
Sara H. Hamza ◽  
...  

AbstractBack groundhyperparathyroidism-jaw tumor (HPT-JT) is an autosomal dominant disorder with variable expression, with an estimated prevalence of 6.7 per 1,000 population. Genetic testing for predisposing CDC73 (HRPT2) mutations has been an important clinical advance, aimed at early detection and/or treatment to prevent advanced disease. The aim of this study is to assess the effect of SNPs on CDC73 structure and function using different bioinformatics tools.MethodComputational analysis using eight different in-silico tools including SIFT, PROVEAN, PolyPhen-2, SNAP2, PhD-SNP, SNPs&GO, PMut and Imutant were used to identify the impact on the structure and/or function of CDC73 gene that might be causing jaw tumour.ResultsFrom (733) SNPs identified in the CDC73 gene we found that only Eleven were deleterious to the function and structure of protein and expected to cause syndrome.ConclusionEleven substantial genetic/molecular aberrations in CDC73 gene were identified that could serve as actionable targets for chemotherapeutic intervention in patients whose disease is no longer surgically curable.


Sign in / Sign up

Export Citation Format

Share Document