scholarly journals Unification of optimal targeting methods in Transcranial Electrical Stimulation

2019 ◽  
Author(s):  
Mariano Fernandez-Corazza ◽  
Sergei Turovets ◽  
Carlos Muravchik

AbstractOne of the major questions in high-density transcranial electrical stimulation (TES) is: given a region of interest (ROI), and given electric current limits for safety, how much current should be delivered by each electrode for optimal targeting? Several solutions, apparently unrelated, have been independently proposed depending on how “optimality” is defined and on how this optimization problem is stated mathematically. Among them, there are closed-formula solutions such as ones provided by the least squares (LS) or weighted LS (WLS) methods, that attempt to fit a desired stimulation pattern at ROI and non-ROI, or reciprocity-based solutions, that maximize the directional dose at ROI under safety constraints. A more complete optimization problem can be stated as follows: maximize directional dose at ROI, limit dose at non-ROI, and constrain total injected current and current per electrode (safety constraints). To consider all these constraints (or some of them) altogether, numerical convex or linear optimization solvers are required. We theoretically demonstrate in this work that LS, WLS and reciprocity-based closed-form solutions are particular solutions to the complete optimization problem stated above, and we validate these findings with simulations on an atlas head model. Moreover, the LS and reciprocity solutions are the two opposite cases emerging under variation of one parameter of the optimization problem, the dose limit at non-ROI. LS solutions belong to one extreme case, when the non-ROI dose limit is strictly imposed, and reciprocity-based solutions belong to the opposite side, i.e., when this limit is loose. As we couple together most optimization approaches published so far, these findings will allow a better understanding of the nature of the TES optimization problem and help in the development of advanced and more effective targeting strategies.


2021 ◽  
Author(s):  
Borja Mercadal ◽  
Ricardo Salvador ◽  
Maria Chiara Biagi ◽  
Fabrice Bartolomei ◽  
Fabrice Wendling ◽  
...  

AbstractBackgroundMetal implants impact the dosimetry assessment in electrical stimulation techniques. Therefore, they need to be included in numerical models. While currents in the body are ionic, metals only allow electron transport. In fact, charge transfer between tissues and metals requires electric fields to drive the electrochemical reactions at the interface. Thus, metal implants may act as insulators or as conductors depending on the scenario.Objective/HypothesisThe aim of this paper is to provide a theoretical argument that guides the choice of the correct representation of metal implants using purely electrical models but considering the electrochemical nature of the problem in the technology of interest.MethodsWe built a simple model of a metal implant exposed to a homogeneous electric field of various magnitudes to represent both weak (e.g., tDCS), medium (TMS) or strong field stimulation. The same geometry was solved using two different models: a purely electric one (with different conductivities for the implant), and an electrochemical one. As an example of application, we also modeled a transcranial electrical stimulation (tES) treatment in a realistic head model with a skull plate using a high and low conductivity value for the plate.ResultsMetal implants generally act as electric insulators when exposed to electric fields up to around 100 V/m (tES and TMS range) and they only resemble a perfect conductor for fields in the order of 1000 V/m and above. The results are independent of the implant’s metal, but they depend on its geometry.Conclusion(s)Metal implants can be accurately represented by a simple electrical model of constant conductivity, but an incorrect model choice can lead to large errors in the dosimetry assessment. In particular, tES modeling with implants incorrectly treated as conductors can lead to errors of 50% in induced fields or more. Our results can be used as a guide to select the correct model in each scenario.





2016 ◽  
Vol 21 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Silvia Convento ◽  
Cristina Russo ◽  
Luca Zigiotto ◽  
Nadia Bolognini

Abstract. Cognitive rehabilitation is an important area of neurological rehabilitation, which aims at the treatment of cognitive disorders due to acquired brain damage of different etiology, including stroke. Although the importance of cognitive rehabilitation for stroke survivors is well recognized, available cognitive treatments for neuropsychological disorders, such as spatial neglect, hemianopia, apraxia, and working memory, are overall still unsatisfactory. The growing body of evidence supporting the potential of the transcranial Electrical Stimulation (tES) as tool for interacting with neuroplasticity in the human brain, in turn for enhancing perceptual and cognitive functions, has obvious implications for the translation of this noninvasive brain stimulation technique into clinical settings, in particular for the development of tES as adjuvant tool for cognitive rehabilitation. The present review aims at presenting the current state of art concerning the use of tES for the improvement of post-stroke visual and cognitive deficits (except for aphasia and memory disorders), showing the therapeutic promises of this technique and offering some suggestions for the design of future clinical trials. Although this line of research is still in infancy, as compared to the progresses made in the last years in other neurorehabilitation domains, current findings appear very encouraging, supporting the development of tES for the treatment of post-stroke cognitive impairments.



2021 ◽  
Vol 337 ◽  
pp. 113586
Author(s):  
Renée Lipka ◽  
Eike Ahlers ◽  
Thomas L. Reed ◽  
Malin I. Karstens ◽  
Vu Nguyen ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document