scholarly journals Bid as a novel interacting partner of IRE1 differentially regulating its RNAse activity

2019 ◽  
Author(s):  
Samirul Bashir ◽  
Debnath Pal ◽  
Mariam Banday ◽  
Ozaira Qadri ◽  
Arif Bashir ◽  
...  

AbstractUnfolded protein response is a dynamic signalling pathway, which is involved in the maintenance of proteostasis and cellular homeostasis. IRE1, a transmembrane signalling protein represents the start point of a highly conserved UPR signalling cascade. IRE1 is endowed with kinase and endoribonuclease activities. The activation of the kinase domain of IRE1 by trans-autophosphorylation leads to the activation of its RNAse domain. RNAse domain performs atypical splicing of Xbp1 mRNA and degradation of mRNAs by an effector function known as Regulated IRE1 Dependent Decay (RIDD). The regulation of the distinctive nature of the IRE1 ribonuclease function is potentially mediated by a dynamic protein structure UPRosome that is an assembly of a huge number of proteins on IRE1. Here, we reported that Bid is a novel recruit to UPRosome, which directly interacts with the cytoplasmic domain of IRE1. Bid controls the auto-phosphorylation of IRE1 in a negative manner where Bid overexpression conditions displayed reduced phosphorylation levels of IRE1 and Bid knockdown cells showed slightly enhanced IRE1 phosphorylation. This effect was reciprocated with JNK, a downstream target of IRE1. Our Insilico analysis revealed that Bid binding to IRE1 dimer averts its structural flexibility and thereby preventing its trans-autophosphorylation activity. We found that the effect of Bid is specific to the IRE1 branch of UPR signalling and competitive in nature. The highlighting observation of the study was that Bid stimulated a differential activity of the IRE1 RNAse domain towards Xbp1 splicing and RIDD. These results together establish that Bid is a part of the UPRosome and modulates IRE1 in a way to differentially regulate its RNAse outputs.

2021 ◽  
Vol 23 ◽  
Author(s):  
Madhu Khanna ◽  
Nishtha Agrawal ◽  
Ramesh Chandra ◽  
Gagan Dhawan

Abstract Unfolded protein response (UPR) is an evolutionarily conserved pathway triggered during perturbation of endoplasmic reticulum (ER) homeostasis in response to the accumulation of unfolded/misfolded proteins under various stress conditions like viral infection, diseased states etc. It is an adaptive signalling cascade with the main purpose of relieving the stress from the ER, which may otherwise lead to the initiation of cell death via apoptosis. ER stress if prolonged, contribute to the aetiology of various diseases like cancer, type II diabetes, neurodegenerative diseases, viral infections etc. Understanding the role of UPR in disease progression will help design pharmacological drugs targeting the sensors of signalling cascade acting as potential therapeutic agents against various diseases. The current review aims at highlighting the relevance of different pathways of UPR in disease progression and control, including the available pharmaceutical interventions responsible for ameliorating diseased state via modulating UPR pathways.


2017 ◽  
Vol 2 ◽  
pp. 36 ◽  
Author(s):  
Fiona Chalmers ◽  
Bernadette Sweeney ◽  
Katharine Cain ◽  
Neil J. Bulleid

Background: The mammalian endoplasmic reticulum (ER) continuously adapts to the cellular secretory load by the activation of an unfolded protein response (UPR).  This stress response results in expansion of the ER, upregulation of proteins involved in protein folding and degradation, and attenuation of protein synthesis.  The response is orchestrated by three signalling pathways each activated by a specific signal transducer, either inositol requiring enzyme α (IRE1α), double-stranded RNA-activated protein kinase-like ER kinase (PERK) or activating transcription factor 6 (ATF6).  Activation of IRE1α results in its oligomerisation, autophosphorylation and stimulation of its ribonuclease activity.  The ribonuclease initiates the splicing of an intron from mRNA encoding the transcription factor, X-box binding protein 1 (XBP1), as well as degradation of specific mRNAs and microRNAs. Methods: To investigate the consequence of expression of exogenous XBP1, we generated a stable cell-line expressing spliced XBP1 mRNA under the control of an inducible promotor.  Results: Following induction of expression, high levels of XBP1 protein were detected, which allowed upregulation of target genes in the absence of induction of the UPR.  Remarkably under stress conditions, the expression of exogenous XBP1 repressed splicing of endogenous XBP1 mRNA without repressing the activation of PERK.  Conclusions: These results illustrate that a feedback mechanism exists to attenuate activation of the Ire1α ribonuclease activity in the presence of XBP1.


2017 ◽  
Vol 2 ◽  
pp. 36 ◽  
Author(s):  
Fiona Chalmers ◽  
Marcel van Lith ◽  
Bernadette Sweeney ◽  
Katharine Cain ◽  
Neil J. Bulleid

Background: The mammalian endoplasmic reticulum (ER) continuously adapts to the cellular secretory load by the activation of an unfolded protein response (UPR).  This stress response results in expansion of the ER, upregulation of proteins involved in protein folding and degradation, and attenuation of protein synthesis.  The response is orchestrated by three signalling pathways each activated by a specific signal transducer, either inositol requiring enzyme α (IRE1α), double-stranded RNA-activated protein kinase-like ER kinase (PERK) or activating transcription factor 6 (ATF6).  Activation of IRE1α results in its oligomerisation, autophosphorylation and stimulation of its ribonuclease activity.  The ribonuclease initiates the splicing of an intron from mRNA encoding the transcription factor, X-box binding protein 1 (XBP1), as well as degradation of specific mRNAs and microRNAs. Methods: To investigate the consequence of expression of exogenous XBP1, we generated a stable cell-line expressing spliced XBP1 mRNA under the control of an inducible promotor. Results: Following induction of expression, high levels of XBP1 protein were detected, which allowed upregulation of target genes in the absence of induction of the UPR.  Remarkably under stress conditions, the expression of exogenous XBP1 repressed splicing of endogenous XBP1 mRNA without repressing the activation of PERK. Conclusions: These results illustrate that a feedback mechanism exists to attenuate Ire1α ribonuclease activity in the presence of XBP1.


2020 ◽  
Vol 219 (2) ◽  
Author(s):  
Michael J. Grey ◽  
Eva Cloots ◽  
Mariska S. Simpson ◽  
Nicole LeDuc ◽  
Yevgeniy V. Serebrenik ◽  
...  

IRE1β is an ER stress sensor uniquely expressed in epithelial cells lining mucosal surfaces. Here, we show that intestinal epithelial cells expressing IRE1β have an attenuated unfolded protein response to ER stress. When modeled in HEK293 cells and with purified protein, IRE1β diminishes expression and inhibits signaling by the closely related stress sensor IRE1α. IRE1β can assemble with and inhibit IRE1α to suppress stress-induced XBP1 splicing, a key mediator of the unfolded protein response. In comparison to IRE1α, IRE1β has relatively weak XBP1 splicing activity, largely explained by a nonconserved amino acid in the kinase domain active site that impairs its phosphorylation and restricts oligomerization. This enables IRE1β to act as a dominant-negative suppressor of IRE1α and affect how barrier epithelial cells manage the response to stress at the host–environment interface.


2019 ◽  
Author(s):  
Florian Hinte ◽  
Eelco van Anken ◽  
Boaz Tirosh ◽  
Wolfram Brune

AbstractThe unfolded protein response (UPR) is a cellular homeostatic circuit regulating protein synthesis and processing in the ER by three ER-to-nucleus signaling pathways. One pathway is triggered by the inositol-requiring enzyme 1 (IRE1), which splices the X-box binding protein 1 (XBP1) mRNA, thereby enabling expression of XBP1s. Another UPR pathway activates the activating transcription factor 6 (ATF6). Here we show that murine cytomegalovirus (MCMV), a prototypic β-herpesvirus, harnesses the UPR to regulate its own life cycle. MCMV activates the IRE1-XBP1 pathway early post infection to relieve repression by XBP1u, the product of the unspliced XBP1 mRNA. XBP1u inhibits viral gene expression and replication by blocking the activation of the viral major immediate-early promoter by XBP1s and ATF6. These findings reveal a redundant function of XBP1s and ATF6 as activators of the viral life cycle, and an unexpected role of XBP1u as a potent repressor of both XBP1s and ATF6-mediated activation.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Tokiro Ishikawa ◽  
Makoto Kashima ◽  
Atsushi J Nagano ◽  
Tomoko Ishikawa-Fujiwara ◽  
Yasuhiro Kamei ◽  
...  

When activated by the accumulation of unfolded proteins in the endoplasmic reticulum, metazoan IRE1, the most evolutionarily conserved unfolded protein response (UPR) transducer, initiates unconventional splicing of XBP1 mRNA. Unspliced and spliced mRNA are translated to produce pXBP1(U) and pXBP1(S), respectively. pXBP1(S) functions as a potent transcription factor, whereas pXBP1(U) targets pXBP1(S) to degradation. In addition, activated IRE1 transmits two signaling outputs independent of XBP1, namely activation of the JNK pathway, which is initiated by binding of the adaptor TRAF2 to phosphorylated IRE1, and regulated IRE1-dependent decay (RIDD) of various mRNAs in a relatively nonspecific manner. Here, we conducted comprehensive and systematic genetic analyses of the IRE1-XBP1 branch of the UPR using medaka fish and found that the defects observed in XBP1-knockout or IRE1-knockout medaka were fully rescued by constitutive expression of pXBP1(S). Thus, the JNK and RIDD pathways are not required for the normal growth and development of medaka. The unfolded protein response sensor/transducer IRE1-mediated splicing of XBP1 mRNA encoding its active downstream transcription factor to maintain the homeostasis of the endoplasmic reticulum is sufficient for growth and development of medaka fish.


2021 ◽  
Author(s):  
Li Chen ◽  
Minshu Ni ◽  
Waqas Ahmed ◽  
Yue Xu ◽  
Xi Bao ◽  
...  

Abstract Pseudorabies virus (PRV) is a pathogen of swine resulting in devastating disease. Some viral infections can cause endoplasmic reticulum (ER) stress and unfolded protein response (UPR) to restore ER homeostasis. However, the mechanism of how PRV induces ER stress and UPR activation remains unclear. Here, levels of proteins or transcriptional factors of three UPR pathways were examined in suspension-cultured BHK-21 cells to investigate PRV-induced ER stress. Results showed that PRV triggered ER stress and UPR of the host cells with the upregulated expression of glucose-related protein 78 kD and 94 kD (GRP78 and GRP94). The protein kinase RNA-like ER kinase (PERK) pathway was activated to upregulate ATF4, CHOP, and GADD34 expression. Additionally, the inositol requiring kinase 1 (IRE1) pathway was triggered by splicing of X box-binding protein 1 (XBP1) mRNA and the enhanced expression of p58IPK and EDEM1. Furthermore, our data demonstrated that PRV took advantage of ER stress to accelerate its replication with the activation of the PERK and IRE1 pathways in suspension-cultured BHK-21 cells, and the glycoprotein B played a crucial role in ER stress.


Sign in / Sign up

Export Citation Format

Share Document