scholarly journals Laminar Specific fMRI Reveals Directed Interactions in Distributed Networks During Language Processing

2019 ◽  
Author(s):  
Daniel Sharoh ◽  
Tim van Mourik ◽  
Lauren J. Bains ◽  
Katrien Segaert ◽  
Kirsten Weber ◽  
...  

AbstractLaminar resolution, functional magnetic resonance imaging (lfMRI) is a noninvasive technique with the potential to distinguish top-down and bottom-up signal contributions on the basis of laminar specific interactions between distal regions. Hitherto, lfMRI could not be demonstrated for either whole-brain distributed networks or for complex cognitive tasks. We show that lfMRI can reveal whole-brain directed networks during word reading. We identify distinct, language critical regions based on their association with the top-down signal stream and establish lfMRI for the noninvasive assessment of directed connectivity during task performance.

2019 ◽  
Vol 116 (42) ◽  
pp. 21185-21190 ◽  
Author(s):  
Daniel Sharoh ◽  
Tim van Mourik ◽  
Lauren J. Bains ◽  
Katrien Segaert ◽  
Kirsten Weber ◽  
...  

Interactions between top-down and bottom-up information streams are integral to brain function but challenging to measure noninvasively. Laminar resolution, functional MRI (lfMRI) is sensitive to depth-dependent properties of the blood oxygen level-dependent (BOLD) response, which can be potentially related to top-down and bottom-up signal contributions. In this work, we used lfMRI to dissociate the top-down and bottom-up signal contributions to the left occipitotemporal sulcus (LOTS) during word reading. We further demonstrate that laminar resolution measurements could be used to identify condition-specific distributed networks on the basis of whole-brain connectivity patterns specific to the depth-dependent BOLD signal. The networks corresponded to top-down and bottom-up signal pathways targeting the LOTS during word reading. We show that reading increased the top-down BOLD signal observed in the deep layers of the LOTS and that this signal uniquely related to the BOLD response in other language-critical regions. These results demonstrate that lfMRI can reveal important patterns of activation that are obscured at standard resolution. In addition to differences in activation strength as a function of depth, we also show meaningful differences in the interaction between signals originating from different depths both within a region and with the rest of the brain. We thus show that lfMRI allows the noninvasive measurement of directed interaction between brain regions and is capable of resolving different connectivity patterns at submillimeter resolution, something previously considered to be exclusively in the domain of invasive recordings.


2021 ◽  
Author(s):  
Beatrice M. Jobst ◽  
Selen Atasoy ◽  
Adrián Ponce-Alvarez ◽  
Ana Sanjuán ◽  
Leor Roseman ◽  
...  

AbstractLysergic acid diethylamide (LSD) is a potent psychedelic drug, which has seen a revival in clinical and pharmacological research within recent years. Human neuroimaging studies have shown fundamental changes in brain-wide functional connectivity and an expansion of dynamical brain states, thus raising the question about a mechanistic explanation of the dynamics underlying these alterations. Here, we applied a novel perturbational approach based on a whole-brain computational model, which opens up the possibility to externally perturb different brain regions in silico and investigate differences in dynamical stability of different brain states, i.e. the dynamical response of a certain brain region to an external perturbation. After adjusting the whole-brain model parameters to reflect the dynamics of functional magnetic resonance imaging (fMRI) BOLD signals recorded under the influence of LSD or placebo, perturbations of different brain areas were simulated by either promoting or disrupting synchronization in the regarding brain region. After perturbation offset, we quantified the recovery characteristics of the brain area to its basal dynamical state with the Perturbational Integration Latency Index (PILI) and used this measure to distinguish between the two brain states. We found significant changes in dynamical complexity with consistently higher PILI values after LSD intake on a global level, which indicates a shift of the brain’s global working point further away from a stable equilibrium as compared to normal conditions. On a local level, we found that the largest differences were measured within the limbic network, the visual network and the default mode network. Additionally, we found a higher variability of PILI values across different brain regions after LSD intake, indicating higher response diversity under LSD after an external perturbation. Our results provide important new insights into the brain-wide dynamical changes underlying the psychedelic state - here provoked by LSD intake - and underline possible future clinical applications of psychedelic drugs in particular psychiatric disorders.HighlightsNovel offline perturbational method applied on functional magnetic resonance imaging (fMRI) data under the effect of lysergic acid diethylamide (LSD)Shift of brain’s global working point to more complex dynamics after LSD intakeConsistently longer recovery time after model perturbation under LSD influenceStrongest effects in resting state networks relevant for psychedelic experienceHigher response diversity across brain regions under LSD influence after an external in silico perturbation


NeuroImage ◽  
1996 ◽  
Vol 3 (3) ◽  
pp. S437
Author(s):  
J.A. Frost ◽  
J.R. Binder ◽  
T.A. Hammeke ◽  
P.S. Bellgowan ◽  
J.A. Springer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document