scholarly journals The ratio between centromeric proteins CENP-A and CENP-C maintains homeostasis of human centromeres

2019 ◽  
Author(s):  
Daniël P. Melters ◽  
Tatini Rakshit ◽  
Minh Bui ◽  
Sergei A. Grigoryev ◽  
David Sturgill ◽  
...  

AbstractThe centromere is the chromosomal locus that seeds the kinetochore, allowing for a physical connection between the chromosome and the mitotic spindle. At the heart of the centromere is the centromere-specific histone H3 variant CENP-A/CENH3. Throughout the cell cycle the constitutive centromere associated network is bound to CENP-A chromatin, but how this protein network modifies CENP-A nucleosome dynamics in vivo is unknown. Here, we purify kinetochore associated native centromeric chromatin and analyze its biochemical features using a combinatorial approach. We report that kinetochore bound chromatin has strongly reduced DNA accessibility and a distinct stabilized nucleosomal configuration. Disrupting the balance between CENP-A and CENP-C result in reduced centromeric occupancy of RNA polymerase 2 and impaired de novo CENP-A loading on the centromeric chromatin fiber, correlating with significant mitotic defects. CENP-A mutants that restore the ratio rescue the mitotic defects. These data support a model in which CENP-C bound centromeric nucleosomes behave as a barrier to the transcriptional machinery and suggest that maintaining the correct ratio between CENP-A and CENP-C levels is critical for centromere homeostasis.

2005 ◽  
Vol 16 (12) ◽  
pp. 5649-5660 ◽  
Author(s):  
Kimberly A. Collins ◽  
Andrea R. Castillo ◽  
Sean Y. Tatsutani ◽  
Sue Biggins

Kinetochores mediate chromosome attachment to the mitotic spindle to ensure accurate chromosome segregation. Budding yeast is an excellent organism for kinetochore assembly studies because it has a simple defined centromere sequence responsible for the localization of >65 proteins. In addition, yeast is the only organism where a conditional centromere is available to allow studies of de novo kinetochore assembly. Using a conditional centromere, we found that yeast kinetochore assembly is not temporally restricted and can occur in both G1 phase and prometaphase. We performed the first investigation of kinetochore assembly in the absence of the centromeric histone H3 variant Cse4 and found that all proteins tested depend on Cse4 to localize. Consistent with this observation, Cse4-depleted cells had severe chromosome segregation defects. We therefore propose that yeast kinetochore assembly requires both centromeric DNA specificity and centromeric chromatin.


2017 ◽  
Author(s):  
Kentaro Ohkuni ◽  
Reuben Levy-Myers ◽  
Jack Warren ◽  
Wei-Chun Au ◽  
Yoshimitsu Takahashi ◽  
...  

AbstractStringent regulation of cellular levels of evolutionarily conserved centromeric histone H3 variant (CENP-A in humans, CID in flies, Cse4 in yeast) prevents its mislocalization to non-centromeric chromatin. Overexpression and mislocalization of CENP-A has been observed in cancers and leads to aneuploidy in yeast, flies, and human cells. Ubiquitin-mediated proteolysis of Cse4 by E3 ligases such as Psh1 and Sumo-Targeted Ubiquitin Ligase (STUbL) Slx5 prevent mislocalization of Cse4. Previously, we identified Siz1 and Siz2 as the major E3 ligases for sumoylation of Cse4. In this study, we identify lysine 65 (K65) in Cse4 as a SUMO site and show that sumoylation of Cse4 K65 regulates its ubiquitin-mediated proteolysis by Slx5. Strains expressing cse4 K65R exhibit reduced levels of sumoylated and ubiquitinated Cse4 in vivo. Furthermore, co-immunoprecipitation experiments reveal reduced interaction of cse4 K65R with Slx5. Defects in sumoylation of cse4 K65R contribute to increased stability and mislocalization of cse4 K65R under normal physiological conditions. Based on the increased stability of cse4 K65R in psh1∆ strains but not in slx5∆ strains, we conclude that Slx5 targets sumoylated Cse4 K65 for ubiquitination-mediated proteolysis independent of Psh1. In summary, we have identified and characterized the physiological role of Cse4 sumoylation and determined that sumoylation of Cse4 K65 regulates ubiquitin-mediated proteolysis and prevents mislocalization of Cse4 which is required for genome stability.


2020 ◽  
Author(s):  
Reinier F. Prosée ◽  
Joanna M. Wenda ◽  
Caroline Gabus ◽  
Kamila Delaney ◽  
Francoise Schwager ◽  
...  

AbstractCentromere protein A (CENP-A) is a histone H3 variant that defines centromeric chromatin and is essential for centromere function. In most eukaryotes CENP-A-containing chromatin is epigenetically maintained, and centromere identity is inherited from one cell cycle to the next. In the germ line of the holocentric nematode Caenorhabditis elegans, this inheritance cycle is disrupted. CENP-A is removed at the mitosis-to-meiosis transition and is established de novo on chromatin during diplotene of meiosis I. Here we show that the N-terminal tail of CENP-A is required for the de novo establishment of centromeres, but dispensable for centromere maintenance during embryogenesis. Worms homozygous for a CENP-A tail deletion maintain a functional centromere during development, but give rise to inviable offspring because they fail to re-establish centromeres in the maternal germ line. We identify the N-terminal tail of CENP-A as a critical domain for the interaction with the conserved kinetochore protein KNL-2, and argue that this interaction plays an important role in setting centromere identity in the germ line. We conclude that centromere establishment and maintenance are functionally distinct in C. elegans.


2009 ◽  
Vol 20 (18) ◽  
pp. 3986-3995 ◽  
Author(s):  
Masahiro Okada ◽  
Katsuya Okawa ◽  
Toshiaki Isobe ◽  
Tatsuo Fukagawa

Centromere identity is thought to be determined by epigenetic mechanisms. The centromere-specific histone H3 variant CENP-A plays a central role in specifying the locus where the centromere is constructed. However, the precise mechanisms that target CENP-A to centromeric chromatin are poorly understood. Here, we show that facilitates chromatin transcription (FACT) localizes to centromeres in a CENP-H–containing complex-dependent manner. In conditional mutant cell lines for SSRP1, a subunit of FACT, centromere targeting of newly synthesized CENP-A is severely inhibited. The chromatin remodeling factor CHD1 binds to SSRP1 both in vivo and in vitro and associates with centromeres. The centromeric localization of CHD1 is lost in SSRP1-depleted cells. RNA interference knockdown of CHD1 leads to a decrease in the amount of centromere localized CENP-A. These findings indicate that the CENP-H–containing complex facilitates deposition of newly synthesized CENP-A into centromeric chromatin in cooperation with FACT and CHD1.


PLoS Biology ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. e3000968
Author(s):  
Reinier F. Prosée ◽  
Joanna M. Wenda ◽  
Isa Özdemir ◽  
Caroline Gabus ◽  
Kamila Delaney ◽  
...  

Centromere protein A (CENP-A) is a histone H3 variant that defines centromeric chromatin and is essential for centromere function. In most eukaryotes, CENP-A-containing chromatin is epigenetically maintained, and centromere identity is inherited from one cell cycle to the next. In the germ line of the holocentric nematode Caenorhabditis elegans, this inheritance cycle is disrupted. CENP-A is removed at the mitosis-to-meiosis transition and is reestablished on chromatin during diplotene of meiosis I. Here, we show that the N-terminal tail of CENP-A is required for the de novo establishment of centromeres, but then its presence becomes dispensable for centromere maintenance during development. Worms homozygous for a CENP-A tail deletion maintain functional centromeres during development but give rise to inviable offspring because they fail to reestablish centromeres in the maternal germ line. We identify the N-terminal tail of CENP-A as a critical domain for the interaction with the conserved kinetochore protein KNL-2 and argue that this interaction plays an important role in setting centromere identity in the germ line. We conclude that centromere establishment and maintenance are functionally distinct in C. elegans.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Jan Wisniewski ◽  
Bassam Hajj ◽  
Jiji Chen ◽  
Gaku Mizuguchi ◽  
Hua Xiao ◽  
...  

The budding yeast centromere contains Cse4, a specialized histone H3 variant. Fluorescence pulse-chase analysis of an internally tagged Cse4 reveals that it is replaced with newly synthesized molecules in S phase, remaining stably associated with centromeres thereafter. In contrast, C-terminally-tagged Cse4 is functionally impaired, showing slow cell growth, cell lethality at elevated temperatures, and extra-centromeric nuclear accumulation. Recent studies using such strains gave conflicting findings regarding the centromeric abundance and cell cycle dynamics of Cse4. Our findings indicate that internally tagged Cse4 is a better reporter of the biology of this histone variant. Furthermore, the size of centromeric Cse4 clusters was precisely mapped with a new 3D-PALM method, revealing substantial compaction during anaphase. Cse4-specific chaperone Scm3 displays steady-state, stoichiometric co-localization with Cse4 at centromeres throughout the cell cycle, while undergoing exchange with a nuclear pool. These findings suggest that a stable Cse4 nucleosome is maintained by dynamic chaperone-in-residence Scm3.


2020 ◽  
Vol 64 (2) ◽  
pp. 205-221
Author(s):  
Ahmad Ali-Ahmad ◽  
Nikolina Sekulić

Abstract The centromere is a chromosome locus that directs equal segregation of chromosomes during cell division. A nucleosome containing the histone H3 variant CENP-A epigenetically defines the centromere. Here, we summarize findings from recent structural biology studies, including several CryoEM structures, that contributed to elucidate specific features of the CENP-A nucleosome and molecular determinants of its interactions with CENP-C and CENP-N, the only two centromere proteins that directly bind to it. Based on those findings, we propose a role of the CENP-A nucleosome in the organization of centromeric chromatin beyond binding centromeric proteins.


2019 ◽  
Vol 2 (4) ◽  
pp. e201900408 ◽  
Author(s):  
Melanie Korntner-Vetter ◽  
Stéphane Lefèvre ◽  
Xiao-Wen Hu ◽  
Roger George ◽  
Martin R Singleton

Centromeric chromatin in fission yeast is distinguished by the presence of nucleosomes containing the histone H3 variant Cnp1CENP-A. Cell cycle–specific deposition of Cnp1 requires the Mis16–Mis18–Mis19 complex, which is thought to direct recruitment of Scm3-chaperoned Cnp1/histone H4 dimers to DNA. Here, we present the structure of the essential Mis18 partner protein Mis19 and describe its interaction with Mis16, revealing a bipartite-binding site. We provide data on the stoichiometry and overall architecture of the complex and provide detailed insights into the Mis18–Mis19 interface.


2021 ◽  
Author(s):  
Owen H Funk ◽  
Yaman Qalieh ◽  
Daniel Z Doyle ◽  
Mandy M Lam ◽  
Kenneth Y Kwan

Histone variants, which can be expressed outside of S-phase and deposited DNA synthesis-independently, provide replacement histones in terminally post-mitotic cells, including neurons. Histone variants can also serve active roles in gene regulation by modulating chromatin states or enabling nucleosome turnover at regulatory regions. Here, we find that newborn cortical excitatory neurons substantially accumulate the histone H3 variant H3.3 immediately post-mitosis. Co-deletion of H3.3-encoding genes H3f3a and H3f3b from new neurons abrogates this accumulation, and causes widespread disruptions in the developmental establishment of the neuronal transcriptome. These broad transcriptomic changes coincide with neuronal maturation phenotypes in acquisition of distinct neuronal identities and formation of axon tracts. Stage-dependent deletion of H3f3a and H3f3b from (1) cycling neural progenitor cells, (2) neurons immediately after terminal mitosis, or (3) several days later, reveals the first post-mitotic days as a critical window for de novo H3.3. After H3.3 accumulation within this developmental window, co-deletion of H3f3a and H3f3b from neurons causes progressive H3.3 depletion over several months without widespread transcriptional disruptions. Our study thus uncovers a key role for H3.3 in establishing neuronal transcriptome, identity, and connectivity immediately post-mitosis that is distinct from its role in maintaining total histone H3 levels over the neuronal lifespan.


2021 ◽  
Vol 220 (3) ◽  
Author(s):  
Marina Murillo-Pineda ◽  
Luis P. Valente ◽  
Marie Dumont ◽  
João F. Mata ◽  
Daniele Fachinetti ◽  
...  

Human centromeres form primarily on α-satellite DNA but sporadically arise de novo at naive ectopic loci, creating neocentromeres. Centromere inheritance is driven primarily by chromatin containing the histone H3 variant CENP-A. Here, we report a chromosome engineering system for neocentromere formation in human cells and characterize the first experimentally induced human neocentromere at a naive locus. The spontaneously formed neocentromere spans a gene-poor 100-kb domain enriched in histone H3 lysine 9 trimethylated (H3K9me3). Long-read sequencing revealed this neocentromere was formed by purely epigenetic means and assembly of a functional kinetochore correlated with CENP-A seeding, eviction of H3K9me3 and local accumulation of mitotic cohesin and RNA polymerase II. At formation, the young neocentromere showed markedly reduced chromosomal passenger complex (CPC) occupancy and poor sister chromatin cohesion. However, long-term tracking revealed increased CPC assembly and low-level transcription providing evidence for centromere maturation over time.


Sign in / Sign up

Export Citation Format

Share Document