scholarly journals Social foraging extends associative odor-food memory expression in an automated learning assay for Drosophila

2019 ◽  
Author(s):  
Aarti Sehdev ◽  
Yunusa G. Mohammed ◽  
Cansu Tafrali ◽  
Paul Szyszka

ABSTRACTAnimals socially interact during foraging and share information about the quality and location of food sources. The mechanisms of social information transfer during foraging have been mostly studied at the behavioral level, and its underlying neural mechanisms are largely unknown. The fruit fly Drosophila melanogaster has become a model for studying the neural bases of social information transfer, as fruit flies show a rich repertoire of social behaviors and provide a well-developed genetic toolbox to monitor and manipulate neuronal activity. Social information transfer has already been characterized for fruit flies’ egg laying, mate choice, foraging and aversive associative learning, however the role of social information transfer on associative odor-food learning during foraging are unknown. Here we present an automated learning and memory assay for walking flies that allows studying the effect of group size on social interactions and on the formation and expression of associative odor-food memories. We found that both inter-fly attraction and the duration of odor-food memory expression increase with group size. We discuss possible behavioral and neural mechanisms of this social effect on odor-food memory expression. This study opens up opportunities to investigate how social interactions are relayed in the neural circuitry of learning and memory expression.

2021 ◽  
Vol 12 ◽  
Author(s):  
Federica Amici ◽  
Anja Widdig ◽  
Lorenzo von Fersen ◽  
Alvaro Lopez Caicoya ◽  
Bonaventura Majolo

Non-human primates show an impressive behavioral diversity, both across and within species. However, the factors explaining intra-specific behavioral variation across groups and individuals are yet understudied. Here, we aimed to assess how group size and living conditions (i.e., captive, semi-free-ranging, wild) are linked to behavioral variation in 5 groups of Barbary macaques (N=137 individuals). In each group, we collected observational data on the time individuals spent in social interactions and on the group dominance style, along with experimental data on social tolerance over food and neophobia. Our results showed that differences in group size predicted differences in the time spent in social interactions, with smaller groups spending a higher proportion of time in close spatial proximity, but a lower proportion of time grooming. Moreover, group size predicted variation in dominance style, with smaller groups being more despotic. Social tolerance was affected by both group size and living conditions, being higher in smaller groups and in groups living in less natural conditions. Finally, individual characteristics also explained variation in social tolerance and neophobia, with socially integrated individuals having higher access to food sources, and higher-ranking ones being more neophobic. Overall, our results support the view that intra-specific variation is a crucial aspect in primate social behavior and call for more comparative studies to better understand the sources of within-species variation.


2020 ◽  
Vol 15 (4) ◽  
pp. 1076-1094 ◽  
Author(s):  
Richard Ramsey ◽  
Rob Ward

Whether on a first date or during a team briefing at work, people’s daily lives are inundated with social information, and in recent years, researchers have begun studying the neural mechanisms that support social-information processing. We argue that the focus of social neuroscience research to date has been skewed toward specialized processes at the expense of general processing mechanisms with a consequence that unrealistic expectations have been set for what specialized processes alone can achieve. We propose that for social neuroscience to develop into a more mature research program, it needs to embrace hybrid models that integrate specialized person representations with domain-general solutions, such as prioritization and selection, which operate across all classes of information (both social and nonsocial). To illustrate our central arguments, we first describe and then evaluate a hybrid model of information processing during social interactions that (a) generates novel and falsifiable predictions compared with existing models; (b) is predicated on a wealth of neurobiological evidence spanning many decades, methods, and species; (c) requires a superior standard of evidence to substantiate domain-specific mechanisms of social behavior; and (d) transforms expectations of what types of neural mechanisms may contribute to social-information processing in both typical and atypical populations.


2006 ◽  
Vol 27 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Ana-Maria Vranceanu ◽  
Linda C. Gallo ◽  
Laura M. Bogart

The present study investigated whether a social information processing bias contributes to the inverse association between trait hostility and perceived social support. A sample of 104 undergraduates (50 men) completed a measure of hostility and rated videotaped interactions in which a speaker disclosed a problem while a listener reacted ambiguously. Results showed that hostile persons rated listeners as less friendly and socially supportive across six conversations, although the nature of the hostility effect varied by sex, target rated, and manner in which support was assessed. Hostility and target interactively impacted ratings of support and affiliation only for men. At least in part, a social information processing bias could contribute to hostile persons' perceptions of their social networks.


2021 ◽  
Author(s):  
Robbie I’Anson Price ◽  
Francisca Segers ◽  
Amelia Berger ◽  
Fabio S Nascimento ◽  
Christoph Grüter

Abstract Social information is widely used in the animal kingdom and can be highly adaptive. In social insects, foragers can use social information to find food, avoid danger or choose a new nest site. Copying others allows individuals to obtain information without having to sample the environment. When foragers communicate information they will often only advertise high quality food sources, thereby filtering out less adaptive information. Stingless bees, a large pantropical group of highly eusocial bees, face intense inter- and intra-specific competition for limited resources, yet display disparate foraging strategies. Within the same environment there are species that communicate the location of food resources to nest-mates and species that do not. Our current understanding of why some species communicate foraging sites while others do not is limited. Studying freely foraging colonies of several co-existing stingless bee species in Brazil, we investigated if recruitment to specific food locations is linked to (1) the sugar content of forage, (2) the duration of foraging trips and (3) the variation in activity of a colony from one day to another and the variation in activity in a species over a day. We found that, contrary to our expectations, species with recruitment communication did not return with higher quality forage than species that do not recruit nestmates. Furthermore, foragers from recruiting species did not have shorter foraging trip durations than those from weakly-recruiting species. Given the intense inter- and intraspecific competition for resources in these environments, it may be that recruiting species favour food resources that can be monopolised by the colony rather than food sources that offer high-quality rewards.


2021 ◽  
pp. 174702182110130
Author(s):  
Francesca Capozzi ◽  
Andrew Paul Bayliss ◽  
Jelena Ristic

Groups of people offer abundant opportunities for social interactions. We used a two-phase task to investigate how social cue numerosity and social information about an individual affected attentional allocation in such multi-agent settings. The learning phase was a standard gaze-cuing procedure in which a stimulus face could be either uninformative or informative about the upcoming target. The test phase was a group-cuing procedure in which the stimulus faces from the learning phase were presented in groups of three. The target could either be cued by the group minority (i.e., one face) or majority (i.e., two faces) or by uninformative or informative stimulus faces. Results showed an effect of cue numerosity, whereby responses were faster to targets cued by the group majority than the group minority. However, responses to targets cued by informative identities included in the group minority were as fast as responses to targets cued by the group majority. Thus, previously learned social information about an individual was able to offset the general enhancement of cue numerosity, revealing a complex interplay between cue numerosity and social information in guiding attention in multi-agent settings.


1996 ◽  
Vol 10 (2) ◽  
pp. 127-165 ◽  
Author(s):  
Stephen W. Pacala ◽  
Deborah M. Gordon ◽  
H. C. J. Godfray

2020 ◽  
Author(s):  
Anissa Kennedy ◽  
Tianfei Peng ◽  
Simone M. Glaser ◽  
Melissa Linn ◽  
Susanne Foitzik ◽  
...  

AbstractCommunication is essential for social animals, but deciding how to utilize information provided by conspecifics is a complex process that depends on environmental and intrinsic factors. Honey bees use a unique form of communication, the waggle dance, to inform nestmates about the location of food sources. However, as in many other animals, experienced individuals often ignore this social information and prefer to rely on prior experiences, i.e. private information. The neurosensory factors that drive the decision to use social information are not yet understood. Here we test whether the decision to use social dance information or private information is linked to gene expression differences in different parts of the nervous system. We trained bees to collect food from sugar water feeders and observed whether they utilize social or private information when exposed to dances for a new food source. We performed transcriptome analysis of four brain parts critical for cognition: the subesophageal ganglion, the central brain, the mushroom bodies, and the antennal lobes but, unexpectedly, detected no differences between social or private information users. In contrast, we found 413 differentially expressed genes in the antennae, suggesting that variation in sensory perception mediate the decision to use social information. Social information users were characterized by the upregulation of dopamine and serotonin genes while private information users upregualted several genes coding for odor perception. These results highlight that decision making in honey bees might also depend on peripheral processes of perception rather than higher-order brain centers of information integration.


NeuroImage ◽  
2020 ◽  
Vol 222 ◽  
pp. 117283
Author(s):  
Yan Zhang ◽  
Dan Zhu ◽  
Peng Zhang ◽  
Wei Li ◽  
Wen Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document