scholarly journals Single-cell analyses reveal aberrant pathways for megakaryocyte-biased hematopoiesis in myelofibrosis and identify mutant clone-specific targets

2019 ◽  
Author(s):  
Bethan Psaila ◽  
Guanlin Wang ◽  
Alba Rodriguez Meira ◽  
Elisabeth F. Heuston ◽  
Rong Li ◽  
...  

SummaryMyelofibrosis is a severe myeloproliferative neoplasm characterised by increased numbers of abnormal bone marrow megakaryocytes that induce progressive fibrosis, destroying the hematopoietic microenvironment. To determine the cellular and molecular basis for aberrant megakaryopoiesis in myelofibrosis, we performed high-throughput single-cell transcriptome profiling of 50,538 hematopoietic stem/progenitor cells (HSPCs), single-cell proteomics, genomics and functional assays. We identified an aberrant pathway for direct megakaryocyte differentiation from the earliest stages of hematopoiesis in myelofibrosis and associated aberrant molecular signatures, including surface antigens selectively expressed byJAK2-mutant HSPCs. Myelofibrosis megakaryocyte progenitors were heterogeneous, with distinct expression of fibrosis and proliferation-associated genes and putative therapy targets. We validated the immunoglobulin receptor G6B as a promisingJAK2-mutant clone-specific antigen warranting further development as an immunotherapy target. Our study paves the way for selective targeting of the myelofibrosis clone and more broadly illustrates the power of single-cell multi-omics to discover tumor-specific therapeutic targets and mediators of tissue fibrosis.

2021 ◽  
Author(s):  
Samudyata ◽  
Ana Osorio Oliveira ◽  
Susmita Malwade ◽  
Nuno Rufino de Sousa ◽  
Sravan K Goparaju ◽  
...  

Neuropsychiatric manifestations are common in both acute and post-acute phase of SARS-CoV-2 infection, but the mechanism of these effects is unknown. Here, we derive human brain organoids with innately developing microglia to investigate the cellular responses to SARS-CoV-2 infection on a single cell level. We find evidence of limited tropism to SARS-CoV-2 for all major cell types and observe extensive neuronal cell death that also include non-infected cells. Single cell transcriptome profiling reveals distinct responses in microglia and astrocytes that share features with cellular states observed in neurodegenerative diseases, includes upregulation of genes with relevance for synaptic stripping, and suggests altered blood brain barrier integrity. Across all cell types, we observe a global translational shut-down as well as altered carbohydrate metabolism and cellular respiration. Together, our findings provide insights into cellular responses of the resident brain immune cells to SARS-CoV-2 and pinpoint mechanisms that may be of relevance for the neuropathological changes observed in COVID-19 patients.


2021 ◽  
Author(s):  
Teresa Rayon ◽  
Rory J. Maizels ◽  
Christopher Barrington ◽  
James Briscoe

AbstractThe spinal cord receives input from peripheral sensory neurons and controls motor output by regulating muscle innervating motor neurons. These functions are carried out by neural circuits comprising molecularly and physiologically distinct neuronal subtypes that are generated in a characteristic spatial-temporal arrangement from progenitors in the embryonic neural tube. The systematic mapping of gene expression in mouse embryos has provided insight into the diversity and complexity of cells in the neural tube. For human embryos, however, less information has been available. To address this, we used single cell mRNA sequencing to profile cervical and thoracic regions in four human embryos of Carnegie Stages (CS) CS12, CS14, CS17 and CS19 from Gestational Weeks (W) 4-7. In total we recovered the transcriptomes of 71,219 cells. Analysis of progenitor and neuronal populations from the neural tube, as well as cells of the peripheral nervous system, in dorsal root ganglia adjacent to the neural tube, identified dozens of distinct cell types and facilitated the reconstruction of the differentiation pathways of specific neuronal subtypes. Comparison with existing mouse datasets revealed the overall similarity of mouse and human neural tube development while highlighting specific features that differed between species. These data provide a catalogue of gene expression and cell type identity in the developing neural tube that will support future studies of sensory and motor control systems and can be explored at https://shiny.crick.ac.uk/scviewer/neuraltube/.


Cell Reports ◽  
2019 ◽  
Vol 27 (7) ◽  
pp. 2241-2247.e4 ◽  
Author(s):  
Christine N. Shulse ◽  
Benjamin J. Cole ◽  
Doina Ciobanu ◽  
Junyan Lin ◽  
Yuko Yoshinaga ◽  
...  

Blood ◽  
2020 ◽  
Vol 135 (25) ◽  
pp. 2235-2251 ◽  
Author(s):  
Jennifer M. Grants ◽  
Joanna Wegrzyn ◽  
Tony Hui ◽  
Kieran O’Neill ◽  
Marion Shadbolt ◽  
...  

Abstract Aging is associated with significant changes in the hematopoietic system, including increased inflammation, impaired hematopoietic stem cell (HSC) function, and increased incidence of myeloid malignancy. Inflammation of aging (“inflammaging”) has been proposed as a driver of age-related changes in HSC function and myeloid malignancy, but mechanisms linking these phenomena remain poorly defined. We identified loss of miR-146a as driving aging-associated inflammation in AML patients. miR-146a expression declined in old wild-type mice, and loss of miR-146a promoted premature HSC aging and inflammation in young miR-146a–null mice, preceding development of aging-associated myeloid malignancy. Using single-cell assays of HSC quiescence, stemness, differentiation potential, and epigenetic state to probe HSC function and population structure, we found that loss of miR-146a depleted a subpopulation of primitive, quiescent HSCs. DNA methylation and transcriptome profiling implicated NF-κB, IL6, and TNF as potential drivers of HSC dysfunction, activating an inflammatory signaling relay promoting IL6 and TNF secretion from mature miR-146a−/− myeloid and lymphoid cells. Reducing inflammation by targeting Il6 or Tnf was sufficient to restore single-cell measures of miR-146a−/− HSC function and subpopulation structure and reduced the incidence of hematological malignancy in miR-146a−/− mice. miR-146a−/− HSCs exhibited enhanced sensitivity to IL6 stimulation, indicating that loss of miR-146a affects HSC function via both cell-extrinsic inflammatory signals and increased cell-intrinsic sensitivity to inflammation. Thus, loss of miR-146a regulates cell-extrinsic and -intrinsic mechanisms linking HSC inflammaging to the development of myeloid malignancy.


2017 ◽  
Vol 525 (12) ◽  
pp. 2735-2781 ◽  
Author(s):  
Lauren A. Laboissonniere ◽  
Gregory M. Martin ◽  
Jillian J. Goetz ◽  
Ran Bi ◽  
Brock Pope ◽  
...  

2021 ◽  
Author(s):  
Wanze Chen ◽  
Orane Guillaume-Gentil ◽  
Riccardo Dainese ◽  
Pernille Yde Rainer ◽  
Magda Zachara ◽  
...  

AbstractSingle-cell transcriptomics (scRNA-seq) has greatly advanced our ability to characterize cellular heterogeneity in health and disease. However, scRNA-seq requires lysing cells, which makes it impossible to link the individual cells to downstream molecular and phenotypic states. Here, we established Live-seq, an approach for single-cell transcriptome profiling that preserves cell viability during RNA extraction using fluidic force microscopy. Based on cell division, functional responses and whole-cell transcriptome read-outs, we show that Live-seq does not induce major cellular perturbations and therefore can function as a transcriptomic recorder. We demonstrate this recording capacity by preregistering the transcriptomes of individual macrophage-like RAW 264.7 cells that were subsequently subjected to time-lapse imaging after lipopolysaccharide (LPS) exposure. This enabled the unsupervised, genome-wide ranking of genes based on their ability to impact macrophage LPS response heterogeneity, revealing basal NFKBIA expression level and cell cycle state as major phenotypic determinants. Furthermore, we show that Live-seq can be used to sequentially profile the transcriptomes of individual macrophages before and after stimulation with LPS, thus enabling the direct mapping of a cell’s trajectory. Live-seq can address a broad range of biological questions by transforming scRNA-seq from an end-point to a temporal analysis approach.


Sign in / Sign up

Export Citation Format

Share Document