scholarly journals The parallel auditory brainstem response

2019 ◽  
Author(s):  
Melissa J Polonenko ◽  
Ross K Maddox

ABSTRACTThe frequency-specific tone-evoked auditory brainstem response (ABR) is an indispensable tool in both the audiology clinic and research laboratory. Most frequently the toneburst ABR is used to estimate hearing thresholds in infants, toddlers and other patients for whom behavioral testing is not feasible. Therefore, results of the ABR exam form the basis for decisions regarding interventions and hearing habilitation with implications extending far into the child’s future. Currently, responses are elicited by periodic sequences of toneburst stimuli presented serially to one ear at a time, which take a long time to measure multiple frequencies and intensities, and provide incomplete information if the infant wakes up early. Here we describe a new method, the parallel ABR (pABR), which uses randomly timed toneburst stimuli to simultaneously acquire ABR waveforms to 5 frequencies in both ears. Here we describe the pABR and quantify its effectiveness in addressing the greatest drawback of current methods: test duration. We show that in adults with normal hearing the pABR yields high-quality waveforms over a range of intensities, with similar morphology to the standard ABR in a fraction of the recording time. Furthermore, longer latencies and smaller amplitudes for low frequencies at a high intensity evoked by the pABR versus serial ABR suggest that responses may have better place specificity due to the masking provided by the other simultaneous toneburst sequences. Thus, the pABR has substantial potential for facilitating faster accumulation of more diagnostic information that is important for timely identification and treatment of hearing loss.

2019 ◽  
Vol 23 ◽  
pp. 233121651987139 ◽  
Author(s):  
Melissa J. Polonenko ◽  
Ross K. Maddox

The frequency-specific tone-evoked auditory brainstem response (ABR) is an indispensable tool in both the audiology clinic and research laboratory. Most frequently, the toneburst ABR is used to estimate hearing thresholds in infants, toddlers, and other patients for whom behavioral testing is not feasible. Therefore, results of the ABR exam form the basis for decisions regarding interventions and hearing habilitation with implications extending far into the child’s future. Currently, responses are elicited by periodic sequences of toneburst stimuli presented serially to one ear at a time, which take a long time to measure multiple frequencies and intensities, and provide incomplete information if the infant wakes up early. Here, we describe a new method, the parallel ABR (pABR), which uses randomly timed toneburst stimuli to simultaneously acquire ABR waveforms to five frequencies in both ears. Here, we describe the pABR and quantify its effectiveness in addressing the greatest drawback of current methods: test duration. We show that in adults with normal hearing the pABR yields high-quality waveforms over a range of intensities, with similar morphology to the standard ABR in a fraction of the recording time. Furthermore, longer latencies and smaller amplitudes for low frequencies at a high intensity evoked by the pABR versus serial ABR suggest that responses may have better place specificity due to the masking provided by the other simultaneous toneburst sequences. Thus, the pABR has substantial potential for facilitating faster accumulation of more diagnostic information that is important for timely identification and treatment of hearing loss.


2021 ◽  
Author(s):  
Melissa J Polonenko ◽  
Ross K Maddox

Timely assessments are critical to providing early intervention and better hearing and spoken language outcomes for children with hearing loss. To facilitate faster diagnostic hearing assessments in infants, we developed the parallel auditory brainstem response (pABR), which presents randomly timed trains of tone pips at five frequencies to each ear simultaneously. We have shown that the pABR yields high-quality waveforms that are similar to the standard, single-frequency serial ABR but in a fraction of the recording time. While well-documented for standard ABRs, it is yet unknown how presentation rate and level interact to affect responses collected in parallel to random tone pip stimuli. Therefore, in this study we determined the optimal range of parameters for the pABR by recording responses across a range of six presentation rates, each at a low and high stimulus level. We show that a wide range of rates yields robust responses in under 15 minutes, but 40 Hz is the optimal singular presentation rate. Extending the analysis window to include later components of the response offers further time-saving advantages for the temporally broader responses to low frequency tone pips. Perceptual thresholds that subtly change across rate allow for a testing paradigm that easily transitions between rates, which may be useful for quickly estimating thresholds for different configurations of hearing loss. These optimized parameters facilitate expediency and effectiveness of the pABR to estimate hearing thresholds in a clinical setting.


2019 ◽  
Vol 35 (2) ◽  
Author(s):  
Muhammad Azeem Aslam ◽  
Adeela Javed ◽  
Abdul Moiz

Objectives: To compare the hearing thresholds obtained with auditory brainstem response (ABR) and auditory steady state response (ASSR) audiometry in children with hearing loss. Methods: Hearing thresholds were obtained by ABR and ASSR in children who presented with suspicion of deafness at Ear, nose & throat department of Al-Nafees Medical College Hospital Islamabad, between January to August 2018. The mean hearing thresholds obtained by two tests were compared within each category of severity of deafness. Time taken by both tests was also compared. Results: A total of 57 patients (114 ears) were included in the study. Among them 27 (47.4%) were male and 30 (52.6%) were female. The mean age of patients at presentation was 42 months (±30.9) with age range from one to 12 years. Mean hearing thresholds obtained by click ABR, chirp ABR, ASSR (1, 2, 4 kHz) & ASSR (0.5, 1, 2, 4 kHz) was 56.25 (±27.61), 58.88 (±27.44), 58.03 (±21.26) & 56.35 (±22.86) respectively. Mean thresholds were comparable between click ABR & ASSR (1, 2, 4 kHz) and between chirp ABR & ASSR (0.5, 1, 2, 4 kHz) in all degrees of hearing loss categories except in those patients with normal hearing thresholds. The mean time taken by clicks ABR, chirp ABR and ASSR were four minutes seven seconds, three minutes 15 seconds and 16 minutes and 7 seconds respectively. Conclusions: Hearing thresholds obtained by ABR and ASSR are comparable in all categories of severity of hearing loss. The time taken by ABR is less as compared to ASSR. How to cite this:Aslam MA, Javed A, Moiz A. Comparison of auditory brainstem response and auditory steady state response audiometry by evaluating the hearing thresholds obtained in children with different severity of hearing loss. Pak J Med Sci. 2019;35(2):---------.   doi: https://doi.org/10.12669/pjms.35.2.688 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2017 ◽  
Vol 28 (10) ◽  
pp. 950-960 ◽  
Author(s):  
Linda W. Norrix ◽  
David Velenovsky

Background: The auditory brainstem response (ABR) is used to estimate behavioral hearing thresholds in infants and difficult-to-test populations. Differences between the toneburst ABR and behavioral thresholds exist making the correspondence between the two measures less than perfect. Some authors have suggested that corrections be applied to ABR thresholds to account for these differences. However, because there is no agreed upon universal standard, confusion regarding the use of corrections exists. Purpose: The primary purpose of this article is to review the reasoning behind and use of corrections when the toneburst ABR is employed to estimate behavioral hearing thresholds. We also discuss other considerations that all audiologists should be aware of when obtaining and reporting ABR test results. Results: A review of the purpose and use of corrections reveals no consensus as to whether they should be applied or which should be used. Additionally, when ABR results are adjusted, there is no agreement as to whether additional corrections for hearing loss or the age of the client are necessary. This lack of consensus can be confusing for all individuals working with hearing-impaired children and their families. Conclusions: Toneburst ABR thresholds do not perfectly align with behavioral hearing thresholds. Universal protocols for the use of corrections are needed. Additionally, evidence-based procedures must be employed to obtain valid ABRs that will accurately estimate hearing thresholds.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Seyede Faranak Emami ◽  
Nasrin Gohari

Since saccular projection is sound sensitive, the objective is to investigate the possibility that the saccular projections may contribute to auditory brainstem response to 500 HZ tone burst (ABR500 HZ). During the case-control research, twenty healthy controls compared to forty selected case groups as having chronic and resistant BPPV were evaluated in the audiology department of Hamadan University of Medical Sciences (Hamadan, Iran). Assessment is comprised of audiologic examinations, cervical vestibular evoked myogenic potentials (cVEMPs), and ABR500 HZ. We found that forty affected ears of BPPV patients with decreased vestibular excitability as detected by abnormal cVEMPs had abnormal results in ABR500 HZ, whereas unaffected ears presented normal findings. Multiple comparisons of mean p13, n23 latencies, and peak-to-peak amplitudes between three groups (affected, unaffected, and healthy ears) were significant. In conclusion, the saccular nerves can be projective to auditory bundles and interact with auditory brainstem response to low frequencies. Combine the cVEMPs and ABR500 HZ in battery approach tests of vestibular assessment and produce valuable data for judgment on the site of lesion. Regarding vestibular cooperation for making of wave V, it is reasonable that the term of ABR500 HZ is not adequate and the new term or vestibular-auditory brainstem response to 500 HZ tone burst is more suitable.


1983 ◽  
Vol 92 (6) ◽  
pp. 651-656 ◽  
Author(s):  
Derald E. Brackmann ◽  
Brian D. Forquer

The purpose of this paper is to describe the audiologic techniques currently used at the Otologic Medical Group, Inc. Auditory threshold in children is determined by a combination of behavioral and objective audiometric techniques. When behavioral techniques fail, auditory brainstem response audiometry combined with impedance audiometry gives a good estimate of hearing thresholds. Impedance audiometry is a valuable addition to the diagnosis of cochlear otosclerosis. This technique is also of benefit in the neurotologic evaluation. Auditory brainstem response audiometry is the most accurate method of detecting an acoustic tumor. We no longer use SISI, tone decay, or Bekesy tests. The newer audiometric studies have greatly improved our evaluation of the auditory system.


2021 ◽  
Vol 15 ◽  
Author(s):  
Feifan Chen ◽  
Fei Zhao ◽  
Nadeem Mahafza ◽  
Wei Lu

Noise-induced cochlear synaptopathy (CS) is defined as a permanent loss of synapses in the auditory nerve pathway following noise exposure. Several studies using auditory brainstem response (ABR) have indicated the presence of CS and increased central gain in tinnitus patients with normal hearing thresholds (TNHT), but the results were inconsistent. This meta-analysis aimed to review the evidence of CS and its pathological changes in the central auditory system in TNHT. Published studies using ABR to study TNHT were reviewed. PubMed, EMBASE, and Scopus databases were selected to search for relevant literature. Studies (489) were retrieved, and 11 were included for meta-analysis. The results supported significantly reduced wave I amplitude in TNHT, whereas the alternations in wave V amplitude were inconsistent among the studies. Consistently increased V/I ratio indicated noise-induced central gain enhancement. The results indicated the evidence of noise-induced cochlear synaptopathy in tinnitus patients with normal hearing. However, inconsistent changes in wave V amplitude may be explained by that the failure of central gain that triggers the pathological neural changes in the central auditory system and/or that increased central gain may be necessary to generate tinnitus but not to maintain tinnitus.


Sign in / Sign up

Export Citation Format

Share Document