scholarly journals Beyond parallel evolution: when several species colonize the same environmental gradient

2019 ◽  
Author(s):  
Alan Le Moan ◽  
Oscar Gaggiotti ◽  
Romina Henriques ◽  
Paulino Martinez ◽  
Dorte Bekkevold ◽  
...  

AbstractGenomic signatures associated with population divergence, speciation and the evolutionary mechanisms responsible for these are key research topics in evolutionary biology. Evolutionary radiations and parallel evolution have offered opportunities to study the role of the environment by providing replicates of ecologically driven speciation. Here, we apply an extension of the parallel evolution framework to study replicates of ecological speciation where multiple species went through a process of population divergence during the colonization of a common environmental gradient. We used the conditions offered by the North Sea – Baltic Sea environmental transition zone and found clear evidence of population structure linked to the Baltic Sea salinity gradient in four flatfish species. We found highly heterogeneous signatures of population divergence within and between species, and no evidence of parallel genomic architecture across species associated with the divergence. Analyses of demographic history suggest that Baltic Sea lineages are older than the age of the Baltic Sea itself. In most cases, divergence appears to involve reticulated demography through secondary contact, and our analyses revealed that genomic patterns of divergence were likely the result of a combination of effects from past isolation and subsequent adaptation to a new environment. In one case, we identified two large structural variants associated with the environmental gradient, where populations were inferred to have diverged in the presence of gene flow. Our results highlight the heterogeneous genomic effects associated with complex interplays of evolutionary forces, and stress the importance of genomic background for studies of parallel evolution.

2019 ◽  
Vol 127 ◽  
pp. 92-103 ◽  
Author(s):  
Jérôme Kaiser ◽  
Karen J. Wang ◽  
Derek Rott ◽  
Gaoyuan Li ◽  
Yinsui Zheng ◽  
...  

2019 ◽  
Vol 9 (16) ◽  
pp. 9225-9238 ◽  
Author(s):  
Francisco R. Barboza ◽  
Jonne Kotta ◽  
Florian Weinberger ◽  
Veijo Jormalainen ◽  
Patrik Kraufvelin ◽  
...  

2019 ◽  
Vol 62 (1) ◽  
pp. 31-42
Author(s):  
Katharina Romoth ◽  
Petra Nowak ◽  
Daniela Kempke ◽  
Anna Dietrich ◽  
Christian Porsche ◽  
...  

Abstract Over recent decades, the neophyte Fucus evanescens has extended eastwards along the salinity gradient within the Baltic Sea, indicating gradual adaptation to low salinity conditions. To find out whether F. evanescens can migrate further into the Baltic Sea and potentially become a competitor to the native F. vesiculosus, the acclimation potentials of different F. evanescens and F. vesiculosus populations were investigated with respect to habitat salinity. For both species, pigmentation, water content, and photosynthetic rate were measured under laboratory and field conditions. The instantaneous measurement data and incubation experiment did not show clear differences in the measured photosynthetic parameters between different salinity levels (6–20), or between species. Maximum likelihood phylogenetic analyses of the nuclear marker PDI (a putative protein disulfide isomerase) separated F. vesiculosus and F. evanescens into well-defined groups supporting the hypothesis that the two very similar species do not represent different morphotypes of the same species/gene pool. These findings indicate that – at least for the vegetative stage of F. evanescens – salinity may not be a limiting factor for a further spread into the Baltic Sea.


2014 ◽  
Vol 37 (8) ◽  
pp. 601-604 ◽  
Author(s):  
Daniel P.R. Herlemann ◽  
Jana Woelk ◽  
Matthias Labrenz ◽  
Klaus Jürgens

2010 ◽  
Vol 7 (8) ◽  
pp. 2489-2508 ◽  
Author(s):  
J. Gelting ◽  
E. Breitbarth ◽  
B. Stolpe ◽  
M. Hassellöv ◽  
J. Ingri

Abstract. To indentify sources and transport mechanisms of iron in a coastal marine environment, we conducted measurements of the physiochemical speciation of Fe in the euphotic zone at three different locations in the Baltic Sea. In addition to sampling across a salinity gradient, we conducted this study over the spring and summer season. Moving from the riverine input characterized low salinity Bothnian Sea, via the Landsort Deep near Stockholm, towards the Gotland Deep in the Baltic Proper, total Fe concentrations averaged 114, 44, and 15 nM, respectively. At all three locations, a decrease in total Fe of 80–90% from early spring to summer was observed. Particulate Fe (PFe) was the dominating phase at all stations and accounted for 75–85% of the total Fe pool on average. The Fe isotope composition (δ 56Fe) of the PFe showed constant positive values in the Bothnian Sea surface waters (+0.08 to +0.20‰). Enrichment of heavy Fe in the Bothnian Sea PFe is possibly associated to input of aggregated land derived Fe-oxyhydroxides and oxidation of dissolved Fe(II). At the Landsort Deep the isotopic fractionation of PFe changed between −0.08‰ to +0.28‰ over the sampling period. The negative values in early spring indicate transport of PFe from the oxic-anoxic boundary at ∼80 m depth. The average colloidal iron fraction (CFe) showed decreasing concentrations along the salinity gradient; Bothnian Sea 15 nM; Landsort Deep 1 nM, and Gotland Deep 0.5 nM. Field Flow Fractionation data indicate that the main colloidal carrier phase for Fe in the Baltic Sea is a carbon-rich fulvic acid associated compound, likely of riverine origin. A strong positive correlation between PFe and chl-a indicates that cycling of suspended Fe is at least partially controlled by primary production. However, this relationship may not be dominated by active uptake of Fe into phytoplankton, but instead may reflect scavenging and removal of PFe during phytoplankton sedimentation.


Sign in / Sign up

Export Citation Format

Share Document