scholarly journals Split-gene drive system provides flexible application for safe laboratory investigation and potential field deployment

2019 ◽  
Author(s):  
Víctor López Del Amo ◽  
Alena L. Bishop ◽  
Héctor M. Sánchez C. ◽  
Jared B. Bennett ◽  
Xuechun Feng ◽  
...  

ABSTRACTCRISPR-based gene drives spread through populations bypassing the dictates of Mendelian genetics, offering a population-engineering tool for tackling vector-borne diseases, managing crop pests, and helping island conservation efforts; unfortunately, current technologies raise safety concerns for unintended gene propagation. Herein, we address this by splitting the two drive components, Cas9 and gRNAs, into separate alleles to form a novel trans-complementing split–gene-drive (tGD) and demonstrate its ability to promote super-Mendelian inheritance of the separate transgenes. This bi-component nature allows for individual transgene optimization and increases safety by restricting escape concerns to experimentation windows. We employ the tGD and a small– molecule-controlled version to investigate the biology of component inheritance and use our system to study the maternal effects on CRISPR inheritance, impaired homology on efficiency, and resistant allele formation. Lastly, mathematical modeling of tGD spread in a population shows potential advantages for improving current gene-drive technologies for field population modification.

2019 ◽  
Author(s):  
Víctor López Del Amo ◽  
Brittany S. Leger ◽  
Kurt J. Cox ◽  
Shubhroz Gill ◽  
Alena L. Bishop ◽  
...  

ABSTRACTBy surpassing the 50% inheritance limit of Mendel’s law of independent assortment, CRISPR-based gene drives have the potential to fight vector-borne diseases or suppress crop pests. However, contemporary gene drives could spread unchecked, posing safety concerns that limit their use in both laboratory and field settings. Current technologies also lack chemical control strategies, which could be applied in the field for dose, spatial and temporal control of gene drives. We describe in Drosophila the first gene-drive system controlled by an engineered Cas9 and a synthetic, orally-available small molecule.Graphical Abstract


2018 ◽  
Vol 115 (21) ◽  
pp. 5522-5527 ◽  
Author(s):  
Jackson Champer ◽  
Jingxian Liu ◽  
Suh Yeon Oh ◽  
Riona Reeves ◽  
Anisha Luthra ◽  
...  

CRISPR homing gene drives can convert heterozygous cells with one copy of the drive allele into homozygotes, thereby enabling super-Mendelian inheritance. Such a mechanism could be used, for example, to rapidly disseminate a genetic payload in a population, promising effective strategies for the control of vector-borne diseases. However, all CRISPR homing gene drives studied in insects thus far have produced significant quantities of resistance alleles that would limit their spread. In this study, we provide an experimental demonstration that multiplexing of guide RNAs can both significantly increase the drive conversion efficiency and reduce germline resistance rates of a CRISPR homing gene drive inDrosophila melanogaster. We further show that an autosomal drive can achieve drive conversion in the male germline, with no subsequent formation of resistance alleles in embryos through paternal carryover of Cas9. Finally, we find that thenanospromoter significantly lowers somatic Cas9 expression compared with thevasapromoter, suggesting thatnanosprovides a superior choice in drive strategies where gene disruption in somatic cells could have fitness costs. Comparison of drive parameters among the different constructs developed in this study and a previous study suggests that, while drive conversion and germline resistance rates are similar between different genomic targets, embryo resistance rates can vary significantly. Taken together, our results mark an important step toward developing effective gene drives capable of functioning in natural populations and provide several possible avenues for further control of resistance rates.


2020 ◽  
Vol 117 (39) ◽  
pp. 24377-24383 ◽  
Author(s):  
Jackson Champer ◽  
Emily Yang ◽  
Esther Lee ◽  
Jingxian Liu ◽  
Andrew G. Clark ◽  
...  

Engineered gene drives are being explored as a new strategy in the fight against vector-borne diseases due to their potential for rapidly spreading genetic modifications through a population. However, CRISPR-based homing gene drives proposed for this purpose have faced a major obstacle in the formation of resistance alleles that prevent Cas9 cleavage. Here, we present a homing drive in Drosophila melanogaster that reduces the prevalence of resistance alleles below detectable levels by targeting a haplolethal gene with two guide RNAs (gRNAs) while also providing a rescue allele. Resistance alleles that form by end-joining repair typically disrupt the haplolethal target gene and are thus removed from the population because individuals that carry them are nonviable. We demonstrate that our drive is highly efficient, with 91% of the progeny of drive heterozygotes inheriting the drive allele and with no functional resistance alleles observed in the remainder. In a large cage experiment, the drive allele successfully spread to all individuals within a few generations. These results show that a haplolethal homing drive can provide an effective tool for targeted genetic modification of entire populations.


2018 ◽  
Author(s):  
Megan E. Goeckel ◽  
Erianna M. Basgall ◽  
Isabel C. Lewis ◽  
Samantha C. Goetting ◽  
Yao Yan ◽  
...  

ABSTRACTThe bacterial CRISPR/Cas genome editing system has provided a major breakthrough in molecular biology. One use of this technology is within a nuclease-based gene drive. This type of system can install a genetic element within a population at unnatural rates. Combatting of vector-borne diseases carried by metazoans could benefit from a delivery system that bypasses traditional Mendelian laws of segregation. Recently, laboratory studies in fungi, insects, and even mice, have demonstrated successful propagation of CRISPR gene drives and the potential utility of this type of mechanism. However, current gene drives still face challenges including evolved resistance, containment, and the consequences of application in wild populations. In this study, we use an artificial gene drive system in budding yeast to explore mechanisms to modulate nuclease activity of Cas9 through its nucleocytoplasmic localization. We examine non-native nuclear localization sequences on Cas9 fusion proteins in vivo and demonstrate that appended signals can titrate gene drive activity and serve as a potential molecular safeguard.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chrysanthi Taxiarchi ◽  
Andrea Beaghton ◽  
Nayomi Illansinhage Don ◽  
Kyros Kyrou ◽  
Matthew Gribble ◽  
...  

AbstractCRISPR-based gene drives offer promising means to reduce the burden of pests and vector-borne diseases. These techniques consist of releasing genetically modified organisms carrying CRISPR-Cas nucleases designed to bias their inheritance and rapidly propagate desired modifications. Gene drives can be intended to reduce reproductive capacity of harmful insects or spread anti-pathogen effectors through wild populations, even when these confer fitness disadvantages. Technologies capable of halting the spread of gene drives may prove highly valuable in controlling, counteracting, and even reverting their effect on individual organisms as well as entire populations. Here we show engineering and testing of a genetic approach, based on the germline expression of a phage-derived anti-CRISPR protein (AcrIIA4), able to inactivate CRISPR-based gene drives and restore their inheritance to Mendelian rates in the malaria vector Anopheles gambiae. Modeling predictions and cage testing show that a single release of male mosquitoes carrying the AcrIIA4 protein can block the spread of a highly effective suppressive gene drive preventing population collapse of caged malaria mosquitoes.


2017 ◽  
Author(s):  
Jackson Champer ◽  
Jingxian Liu ◽  
Suh Yeon Oh ◽  
Riona Reeves ◽  
Anisha Luthra ◽  
...  

ABSTRACTCRISPR gene drives can efficiently convert heterozygous cells with one copy of the drive allele into homozygotes, thereby enabling super-Mendelian inheritance. This mechanism could be used, for example, to rapidly disseminate a genetic payload through a population, promising novel strategies for the control of vector-borne diseases. However, all CRISPR gene drives tested have produced significant quantities of resistance alleles that cannot be converted to drive alleles and would likely prevent these drives from spreading in a natural population. In this study, we assessed three strategies for reducing resistance allele formation. First, we directly compared drives with thenanosandvasapromoters, which showed that thevasadrive produced high levels of resistance alleles in somatic cells. This was not observed in thenanosdrive. Another strategy was the addition of a second gRNA to the drive, which both significantly increased the drive conversion efficiency and reduced the formation rate of resistance alleles. Finally, to minimize maternal carryover of Cas9, we assessed the performance of an autosomal drive acting in the male germline, and found no subsequent formation of resistance alleles in embryos. Our results mark a step toward developing effective gene drives capable of functioning in natural populations and provide several possible avenues for further reduction of resistance rates.


2019 ◽  
Author(s):  
Jackson Champer ◽  
Emily Yang ◽  
Yoo Lim Lee ◽  
Jingxian Liu ◽  
Andrew G. Clark ◽  
...  

ABSTRACTEngineered gene drives are being explored as a potential strategy for the control of vector-borne diseases due to their ability to rapidly spread genetic modifications through a population. While an effective CRISPR homing gene drive for population suppression has recently been demonstrated in mosquitoes, formation of resistance alleles that prevent Cas9 cleavage remains the major obstacle for drive strategies aiming at population modification, rather than elimination. Here, we present a homing drive in Drosophila melanogaster that reduces resistance allele formation below detectable levels by targeting a haplolethal gene with two gRNAs while also providing a rescue allele. This is because any resistance alleles that form by end-joining repair will typically disrupt the haplolethal target gene, rendering the individuals carrying them nonviable. We demonstrate that our drive is highly efficient, with 91% of the progeny of drive heterozygotes inheriting the drive allele and with no resistance alleles observed in the remainder. In a large cage experiment, the drive allele successfully spread to all individuals. These results show that a haplolethal homing drive can be a highly effective tool for population modification.


2017 ◽  
Author(s):  
Jackson Champer ◽  
Riona Reeves ◽  
Suh Yeon Oh ◽  
Chen Liu ◽  
Jingxian Liu ◽  
...  

ABSTRACTA functioning gene drive system could fundamentally change our strategies for the control of vector-borne diseases by facilitating rapid dissemination of transgenes that prevent pathogen transmission or reduce vector capacity. CRISPR/Cas9 gene drive promises such a mechanism, which works by converting cells that are heterozygous for the drive construct into homozygotes, thereby enabling super-Mendelian inheritance. Though CRISPR gene drive activity has already been demonstrated, a key obstacle for current systems is their propensity to generate resistance alleles. In this study, we developed two CRISPR gene drive constructs based on thenanosandvasapromoters that allowed us to illuminate the different mechanisms by which resistance alleles are formed in the model organismDrosophila melanogaster.We observed resistance allele formation at high rates both prior to fertilization in the germline and post-fertilization in the embryo due to maternally deposited Cas9. Assessment of drive activity in genetically diverse backgrounds further revealed substantial differences in conversion efficiency and resistance rates. Our results demonstrate that the evolution of resistance will likely impose a severe limitation to the effectiveness of current CRISPR gene drive approaches, especially when applied to diverse natural populations.


2018 ◽  
Author(s):  
Jackson Champer ◽  
Joanna Zhao ◽  
Joanna Zhao ◽  
Samuel E. Champer ◽  
Jingxian Liu ◽  
...  

ABSTRACTUnderdominance gene drive systems promise a mechanism for rapidly spreading payload alleles through a local population while otherwise remaining confined, unable to spread into neighboring populations due to their frequency-dependent dynamics. Such systems could provide a new tool in the fight against vector-borne diseases by disseminating transgenic payloads through vector populations. If local confinement can indeed be achieved, the decision-making process for the release of such constructs would likely be considerably simpler compared to other gene drive mechanisms such as CRISPR homing drives. So far, the confinement ability of underdominance systems has only been demonstrated in models of panmictic populations linked by migration. How such systems would behave in realistic populations where individuals move over continuous space remains largely unknown. Here, we study several underdominance systems in continuous-space population models and show that their dynamics are drastically altered from those in panmictic populations. Specifically, we find that all underdominance systems we studied can fail to persist in such environments, even after successful local establishment. At the same time, we find that a two-locus two-toxin-antitoxin system can still successfully invade neighboring populations in many scenarios even under weak migration. This suggests that the parameter space for underdominance systems to both establish in a given region and remain confined to that region would likely be highly limited. Overall, these results indicate that spatial context must be considered when assessing strategies for the deployment of underdominance systems.


2021 ◽  
Vol 118 (22) ◽  
pp. e2004838117
Author(s):  
William T. Garrood ◽  
Nace Kranjc ◽  
Karl Petri ◽  
Daniel Y. Kim ◽  
Jimmy A. Guo ◽  
...  

CRISPR-Cas9 nuclease-based gene drives have been developed toward the aim of control of the human malaria vector Anopheles gambiae. Gene drives are based on an active source of Cas9 nuclease in the germline that promotes super-Mendelian inheritance of the transgene by homology-directed repair (“homing”). Understanding whether CRISPR-induced off-target mutations are generated in Anopheles mosquitoes is an important aspect of risk assessment before any potential field release of this technology. We compared the frequencies and the propensity of off-target events to occur in four different gene-drive strains, including a deliberately promiscuous set-up, using a nongermline restricted promoter for SpCas9 and a guide RNA with many closely related sites (two or more mismatches) across the mosquito genome. Under this scenario we observed off-target mutations at frequencies no greater than 1.42%. We witnessed no evidence that CRISPR-induced off-target mutations were able to accumulate (or drive) in a mosquito population, despite multiple generations’ exposure to the CRISPR-Cas9 nuclease construct. Furthermore, judicious design of the guide RNA used for homing of the CRISPR construct, combined with tight temporal constriction of Cas9 expression to the germline, rendered off-target mutations undetectable. The findings of this study represent an important milestone for the understanding and managing of CRISPR-Cas9 specificity in mosquitoes, and demonstrates that CRISPR off-target editing in the context of a mosquito gene drive can be reduced to minimal levels.


Sign in / Sign up

Export Citation Format

Share Document