scholarly journals The mammalian plasma membrane is defined by transmembrane asymmetries in lipid unsaturation, leaflet packing, and protein shape

2019 ◽  
Author(s):  
JH Lorent ◽  
KR Levental ◽  
L Ganesan ◽  
G Rivera-Longsworth ◽  
E. Sezgin ◽  
...  

SUMMARYA fundamental feature of cellular plasma membranes (PM) is asymmetric lipid distribution between the bilayer leaflets. However, neither the detailed, comprehensive compositions of individual PM leaflets, nor how these contribute to structural membrane asymmetries have been defined. We report the distinct lipidomes and biophysical properties of both monolayers in living mammalian PMs. Phospholipid unsaturation is dramatically asymmetric, with the cytoplasmic leaflet being ∼2-fold more unsaturated than the exoplasmic. Atomistic simulations and spectroscopy of leaflet-selective fluorescent probes reveal that the outer PM leaflet is more packed and less diffusive than the inner leaflet, with this biophysical asymmetry maintained in the endocytic system. The structural asymmetry of the PM is reflected in asymmetric structures of protein transmembrane domains (TMD). These structural asymmetries are conserved throughout Eukaryota, suggesting fundamental cellular design principles.


2020 ◽  
Vol 16 (6) ◽  
pp. 710-710 ◽  
Author(s):  
J. H. Lorent ◽  
K. R. Levental ◽  
L. Ganesan ◽  
G. Rivera-Longsworth ◽  
E. Sezgin ◽  
...  


2002 ◽  
Vol 282 (6) ◽  
pp. L1382-L1390 ◽  
Author(s):  
Paola Palestini ◽  
Chiara Calvi ◽  
Elena Conforti ◽  
Laura Botto ◽  
Carla Fenoglio ◽  
...  

We evaluated the changes in plasma membrane composition, biophysical properties, and morphology of pulmonary endothelial cells in anesthetized rabbits receiving 0.5 ml · kg−1 · min−1 saline infusion for 180 min, causing mild interstitial edema. Plasma membrane fractions were obtained from lung homogenates with gradient centrifugation, allowing a sixfold enrichment in caveolin-1. In edematous lungs, cholesterol content and phospholipidic phosphorus increased by 15 and 40%, respectively. These data correlated with morphometric analysis of lungs fixed in situ by vascular perfusion with 2.5% glutaraldehyde, suggesting a relative increase in surface of luminal to interstitial front of the capillary endothelial cells, due to a convoluted luminal profile. In edematous lungs, the fraction of double-bound fatty acids increased in membrane lipids; moreover, the phosphatidylcholine/phosphatidylethanolamine and the cholesterol/phospholipid ratios decreased. These changes were consistent with the increase in fluorescence anisotropy of plasma membrane, indicating an increase in its fluidity. Data suggest that mechanical stimuli elicited by a modest (∼4%) increase in extravascular water cause marked changes in plasma membranes that may be of relevance in signal transduction and endothelial cell activation.



2020 ◽  
Vol 16 (6) ◽  
pp. 644-652 ◽  
Author(s):  
J. H. Lorent ◽  
K. R. Levental ◽  
L. Ganesan ◽  
G. Rivera-Longsworth ◽  
E. Sezgin ◽  
...  


The Analyst ◽  
2018 ◽  
Vol 143 (17) ◽  
pp. 4180-4188 ◽  
Author(s):  
Xinfu Zhang ◽  
Benlei Wang ◽  
Yi Xiao ◽  
Chao Wang ◽  
Ling He

A plasma membrane-targetable two-photon fluorescent probe for capturing nitric oxide in cells and brain tissues.



Author(s):  
J.M. Robinson ◽  
J.M Oliver

Specialized regions of plasma membranes displaying lateral heterogeneity are the focus of this Symposium. Specialized membrane domains are known for certain cell types such as differentiated epithelial cells where lateral heterogeneity in lipids and proteins exists between the apical and basolateral portions of the plasma membrane. Lateral heterogeneity and the presence of microdomains in membranes that are uniform in appearance have been more difficult to establish. Nonetheless a number of studies have provided evidence for membrane microdomains and indicated a functional importance for these structures.This symposium will focus on the use of various imaging modalities and related approaches to define membrane microdomains in a number of cell types. The importance of existing as well as emerging imaging technologies for use in the elucidation of membrane microdomains will be highlighted. The organization of membrane microdomains in terms of dimensions and spatial distribution is of considerable interest and will be addressed in this Symposium.



2021 ◽  
Vol 154 (9) ◽  
pp. 095101
Author(s):  
Katie A. Wilson ◽  
Stephen J. Fairweather ◽  
Hugo I. MacDermott-Opeskin ◽  
Lily Wang ◽  
Richard A. Morris ◽  
...  


Author(s):  
Nikolas K. Teiwes ◽  
Ingo Mey ◽  
Phila C. Baumann ◽  
Lena Strieker ◽  
Ulla Unkelbach ◽  
...  


1985 ◽  
Vol 33 (8) ◽  
pp. 837-839 ◽  
Author(s):  
A Messing ◽  
A Stieber ◽  
N K Gonatas

The resolution of indirect immunoperoxidase methods for localizing antigens on the surface of plasma membranes of cultured cells was tested using dissociated monolayer cultures of ciliary ganglion neurons prelabeled with cationic ferritin. Clusters of ferritin were produced on the cell surface by warming the cells to 37 degrees C after the ferritin, rabbit anti-ferritin, and goat anti-rabbit immunoglobulin coupled to horseradish peroxidase had all been applied. Intense 3,3'-diaminobenzidine tetrahydrochloride (DAB) staining was limited to the regions immediately surrounding the ferritin clusters. The lateral spread of the DAB reaction product beyond the outer ferritin particles in each cluster averaged 54-81 nm in four experiments. A second type of increased density, coinciding with the thickness of the plasma membrane, was also seen. These stained plasma membranes extended 161-339 nm from the ferritin clusters.



1986 ◽  
Vol 239 (2) ◽  
pp. 301-310 ◽  
Author(s):  
W D Sweet ◽  
F Schroeder

The functional consequences of the differences in lipid composition and structure between the two leaflets of the plasma membrane were investigated. Fluorescence of 1,6-diphenylhexa-1,3,5-triene(DPH), quenching, and differential polarized phase fluorimetry demonstrated selective fluidization by local anaesthetics of individual leaflets in isolated LM-cell plasma membranes. As measured by decreased limiting anisotropy of DPH fluorescence, cationic (prilocaine) and anionic (phenobarbital and pentobarbital) amphipaths preferentially fluidized the cytofacial and exofacial leaflets respectively. Unlike prilocaine, procaine, also a cation, fluidized both leaflets of these membranes equally. Pentobarbital stimulated 5′-nucleotidase between 0.1 and 5 mM and inhibited at higher concentrations, whereas phenobarbital only inhibited, at higher concentrations. Cationic drugs were ineffective. Two maxima of (Na+ + K+)-ATPase activation were obtained with both anionic drugs. Only one activation maximum was obtained with both cationic drugs. The maximum in activity below 1 mM for all four drugs clustered about a single limiting anisotropy value in the cytofacial leaflet, whereas there was no correlation between activity and limiting anisotropy in the exofacial leaflets. Therefore, although phenobarbital and pentobarbital below 1 mM fluidized the exofacial leaflet more than the cytofacial leaflet, the smaller fluidization in the cytofacial leaflet was functionally significant for (Na+ + K+)-ATPase. Mg2+-ATPase was stimulated at 1 mM-phenobarbital, unaffected by pentobarbital and slightly stimulated by both cationic drugs at concentrations fluidizing both leaflets. Thus the activity of (Na+ + K+)-ATPase was highly sensitive to selective fluidization of the leaflet containing its active site, whereas the other enzymes examined were little affected by fluidization of either leaflet.



Sign in / Sign up

Export Citation Format

Share Document