scholarly journals ER membranes exhibit phase behavior at sites of organelle contact

2019 ◽  
Author(s):  
Christopher King ◽  
Prabuddha Sengupta ◽  
Arnold Seo ◽  
Jennifer Lippincott-Schwartz

The plasma membrane of cells exhibits phase behavior that allows transient concentration of specific proteins and lipids, giving rise to functionally dynamic and diverse nanoscopic domains. This phase behavior is observable in giant plasma membrane-derived vesicles, in which microscopically visible, liquid-ordered (Lo) and liquid-disordered (Ld) lipid domains form upon a shift to low temperatures. The extent such phase behavior exists in the membrane of the endoplasmic reticulum (ER) of cells remains unclear. To explore the phase behavior of the ER membrane in cells, we used hypotonic cell swelling to generate Large Intra-Cellular Vesicles (LICVs) from the ER in cells. ER LICVs retained their lumenal protein content, could be retubulated into an ER network, and maintained stable inter-organelle contacts, where protein tethers are concentrated at these contacts. Notably, upon temperature reduction, ER LICVs underwent reversible phase separation into microscopically-visible Lo and Ld lipid domains. The Lo lipid domains marked ER contact sites with other organelles. These findings demonstrate that LICVs provide an important model system for studying the biophysical properties of intracellular organelles in cells.Significance StatementPrior work has demonstrated that the plasma membrane can phase separate into microscopically visible Lo and Ld domains with distinct lipid and protein content. However, such behavior on the ER membrane has not been experimentally observed, even though the ER contacts every organelle of the cell, exchanging lipids and metabolites in a highly regulated manner at these contacts. We find here that hypotonic treatment generates Large Intra-Cellular Vesicles from the endoplasmic reticulum and other membrane-bound organelles in cells, enabling the study of phase behavior on the ER membrane. We show that ER membranes can be reversibly phase separated into microscopically-observable, Lo and Ld domains. ER LICVs also maintained stable inter-organelle contact sites in cells, with organelle tethers concentrated at these contacts.

2021 ◽  
Vol 22 (9) ◽  
pp. 4703
Author(s):  
Tim Crul ◽  
József Maléth

In eukaryotic cells, ultimate specificity in activation and action—for example, by means of second messengers—of the myriad of signaling cascades is primordial. In fact, versatile and ubiquitous second messengers, such as calcium (Ca2+) and cyclic adenosine monophosphate (cAMP), regulate multiple—sometimes opposite—cellular functions in a specific spatiotemporal manner. Cells achieve this through segregation of the initiators and modulators to specific plasma membrane (PM) subdomains, such as lipid rafts and caveolae, as well as by dynamic close contacts between the endoplasmic reticulum (ER) membrane and other intracellular organelles, including the PM. Especially, these membrane contact sites (MCSs) are currently receiving a lot of attention as their large influence on cell signaling regulation and cell physiology is increasingly appreciated. Depletion of ER Ca2+ stores activates ER membrane STIM proteins, which activate PM-residing Orai and TRPC Ca2+ channels at ER–PM contact sites. Within the MCS, Ca2+ fluxes relay to cAMP signaling through highly interconnected networks. However, the precise mechanisms of MCS formation and the influence of their dynamic lipid environment on their functional maintenance are not completely understood. The current review aims to provide an overview of our current understanding and to identify open questions of the field.


2007 ◽  
Vol 179 (3) ◽  
pp. 467-483 ◽  
Author(s):  
Christopher J.R. Loewen ◽  
Barry P. Young ◽  
Shabnam Tavassoli ◽  
Timothy P. Levine

How cells monitor the distribution of organelles is largely unknown. In budding yeast, the largest subdomain of the endoplasmic reticulum (ER) is a network of cortical ER (cER) that adheres to the plasma membrane. Delivery of cER from mother cells to buds, which is termed cER inheritance, occurs as an orderly process early in budding. We find that cER inheritance is defective in cells lacking Scs2, a yeast homologue of the integral ER membrane protein VAP (vesicle-associated membrane protein–associated protein) conserved in all eukaryotes. Scs2 and human VAP both target yeast bud tips, suggesting a conserved action of VAP in attaching ER to sites of polarized growth. In addition, the loss of either Scs2 or Ice2 (another protein involved in cER inheritance) perturbs septin assembly at the bud neck. This perturbation leads to a delay in the transition through G2, activating the Saccharomyces wee1 kinase (Swe1) and the morphogenesis checkpoint. Thus, we identify a mechanism involved in sensing the distribution of ER.


2021 ◽  
Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P Haslam ◽  
Steffen Vanneste ◽  
...  

Abstract Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild type while the levels of most glycerolipid species remain unchanged. Additionally, the SYT1-green fluorescent protein (GFP) fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


2005 ◽  
Vol 169 (6) ◽  
pp. 897-908 ◽  
Author(s):  
Cosima Luedeke ◽  
Stéphanie Buvelot Frei ◽  
Ivo Sbalzarini ◽  
Heinz Schwarz ◽  
Anne Spang ◽  
...  

Polarized cells frequently use diffusion barriers to separate plasma membrane domains. It is unknown whether diffusion barriers also compartmentalize intracellular organelles. We used photobleaching techniques to characterize protein diffusion in the yeast endoplasmic reticulum (ER). Although a soluble protein diffused rapidly throughout the ER lumen, diffusion of ER membrane proteins was restricted at the bud neck. Ultrastructural studies and fluorescence microscopy revealed the presence of a ring of smooth ER at the bud neck. This ER domain and the restriction of diffusion for ER membrane proteins through the bud neck depended on septin function. The membrane-associated protein Bud6 localized to the bud neck in a septin-dependent manner and was required to restrict the diffusion of ER membrane proteins. Our results indicate that Bud6 acts downstream of septins to assemble a fence in the ER membrane at the bud neck. Thus, in polarized yeast cells, diffusion barriers compartmentalize the ER and the plasma membrane along parallel lines.


2021 ◽  
Vol 220 (10) ◽  
Author(s):  
Javier Encinar del Dedo ◽  
Isabel María Fernández-Golbano ◽  
Laura Pastor ◽  
Paula Meler ◽  
Cristina Ferrer-Orta ◽  
...  

Sterols are unevenly distributed within cellular membranes. How their biosynthetic and transport machineries are organized to generate heterogeneity is largely unknown. We previously showed that the yeast sterol transporter Osh2 is recruited to endoplasmic reticulum (ER)–endocytic contacts to facilitate actin polymerization. We now find that a subset of sterol biosynthetic enzymes also localizes at these contacts and interacts with Osh2 and the endocytic machinery. Following the sterol dynamics, we show that Osh2 extracts sterols from these subdomains, which we name ERSESs (ER sterol exit sites). Further, we demonstrate that coupling of the sterol synthesis and transport machineries is required for endocytosis in mother cells, but not in daughters, where plasma membrane loading with accessible sterols and endocytosis are linked to secretion.


2020 ◽  
Vol 117 (28) ◽  
pp. 16638-16648 ◽  
Author(s):  
Ga-Yeon Son ◽  
Krishna Prasad Subedi ◽  
Hwei Ling Ong ◽  
Lucile Noyer ◽  
Hassan Saadi ◽  
...  

The Orai1 channel is regulated by stromal interaction molecules STIM1 and STIM2 within endoplasmic reticulum (ER)-plasma membrane (PM) contact sites. Ca2+signals generated by Orai1 activate Ca2+-dependent gene expression. When compared with STIM1, STIM2 is a weak activator of Orai1, but it has been suggested to have a unique role in nuclear factor of activated T cells 1 (NFAT1) activation triggered by Orai1-mediated Ca2+entry. In this study, we examined the contribution of STIM2 in NFAT1 activation. We report that STIM2 recruitment of Orai1/STIM1 to ER-PM junctions in response to depletion of ER-Ca2+promotes assembly of the channel with AKAP79 to form a signaling complex that couples Orai1 channel function to the activation of NFAT1. Knockdown of STIM2 expression had relatively little effect on Orai1/STIM1 clustering or local and global [Ca2+]iincreases but significantly attenuated NFAT1 activation and assembly of Orai1 with AKAP79. STIM1ΔK, which lacks the PIP2-binding polybasic domain, was recruited to ER-PM junctions following ER-Ca2+depletion by binding to Orai1 and caused local and global [Ca2+]iincreases comparable to those induced by STIM1 activation of Orai1. However, in contrast to STIM1, STIM1ΔK induced less NFAT1 activation and attenuated the association of Orai1 with STIM2 and AKAP79. Orai1-AKAP79 interaction and NFAT1 activation were recovered by coexpressing STIM2 with STIM1ΔK. Replacing the PIP2-binding domain of STIM1 with that of STIM2 eliminated the requirement of STIM2 for NFAT1 activation. Together, these data demonstrate an important role for STIM2 in coupling Orai1-mediated Ca2+influx to NFAT1 activation.


2018 ◽  
Vol 115 (31) ◽  
pp. E7331-E7340 ◽  
Author(s):  
Ben Johnson ◽  
Ashley N. Leek ◽  
Laura Solé ◽  
Emily E. Maverick ◽  
Tim P. Levine ◽  
...  

Kv2.1 exhibits two distinct forms of localization patterns on the neuronal plasma membrane: One population is freely diffusive and regulates electrical activity via voltage-dependent K+ conductance while a second one localizes to micrometer-sized clusters that contain densely packed, but nonconducting, channels. We have previously established that these clusters represent endoplasmic reticulum/plasma membrane (ER/PM) junctions that function as membrane trafficking hubs and that Kv2.1 plays a structural role in forming these membrane contact sites in both primary neuronal cultures and transfected HEK cells. Clustering and the formation of ER/PM contacts are regulated by phosphorylation within the channel C terminus, offering cells fast, dynamic control over the physical relationship between the cortical ER and PM. The present study addresses the mechanisms by which Kv2.1 and the related Kv2.2 channel interact with the ER membrane. Using proximity-based biotinylation techniques in transfected HEK cells we identified ER VAMP-associated proteins (VAPs) as potential Kv2.1 interactors. Confirmation that Kv2.1 and -2.2 bind VAPA and VAPB employed colocalization/redistribution, siRNA knockdown, and Förster resonance energy transfer (FRET)-based assays. CD4 chimeras containing sequence from the Kv2.1 C terminus were used to identify a noncanonical VAP-binding motif. VAPs were first identified as proteins required for neurotransmitter release in Aplysia and are now known to be abundant scaffolding proteins involved in membrane contact site formation throughout the ER. The VAP interactome includes AKAPs, kinases, membrane trafficking machinery, and proteins regulating nonvesicular lipid transport from the ER to the PM. Therefore, the Kv2-induced VAP concentration at ER/PM contact sites is predicted to have wide-ranging effects on neuronal cell biology.


2018 ◽  
Vol 178 (2) ◽  
pp. 641-653 ◽  
Author(s):  
Kazuya Ishikawa ◽  
Kentaro Tamura ◽  
Haruko Ueda ◽  
Yoko Ito ◽  
Akihiko Nakano ◽  
...  

2017 ◽  
Vol 45 (2) ◽  
pp. 477-488 ◽  
Author(s):  
Yael Elbaz-Alon

Membrane contact sites (MCSs) are areas of close apposition between the membranes of two different organelles that enable non-vesicular transfer of ions and lipids. Recent studies reveal that mitochondria maintain contact sites with organelles other than the endoplasmic reticulum such as the vacuole, plasma membrane and peroxisomes. This review focuses on novel findings achieved mainly in yeast regarding tethers, function and regulation of mitochondria–organelle contact sites. The emerging network of MCSs linking virtually all cellular organelles is highly dynamic and integrated with cellular metabolism.


Sign in / Sign up

Export Citation Format

Share Document