scholarly journals Evolutionary changes of phosphoenolpyruvate transporter (PPT) during the emergence of C4 photosynthesis

2019 ◽  
Author(s):  
Ming-Ju Amy Lyu ◽  
Yaling Wang ◽  
Jianjun Jiang ◽  
Genyun Chen ◽  
Xin-Guang Zhu

AbstractC4 photosynthesis is a complex trait, which evolved from its ancestral C3 photosynthesis by recruiting pre-existing genes. The evolutionary history of enzymes involved in the C4 shuttle has been extensively studied. Here we analyze the evolutionary changes of phosphoenolpyruvate (PEP) transporter (PPT) during its recruitment from C3 to C4 photosynthesis. Our analysis shows that 1) among the two PPT paralogs, i.e. PPT1 and PPT2, PPT1 is an ancestral copy while PPT2 is a derived copy; 2) during C4 evolution, PPT1 shifted its expression from predominantly in root to in leaf, and from bundle sheath cell to mesophyll cell, supporting that PPT1 was recruited into C4 photosynthesis; 3) PPT1 gained increased transcript abundance, gained more rapid and long-lasting responses to light during C3 to C4 evolution, while PPT2 lost its responsiveness to light; 4) PPT1 gained a number of new cis-elements during C4 evolution; 5) C4 PPT1 can complement the phenotype of Arabidopsis PPT1 loss-of-function mutant, suggesting that it is a bidirectional transporter and its transport direction did not alter during C4 evolution. We finally discuss mechanistic linkages between these observed changes in PPT1 and C4 photosynthesis evolution.High lightDuring the process of C4 photosynthesis evolution, PPT not only experienced changes in its expression location and transcript abundance, but also acquired new cis-elements in its promoter region and accumulated protein variations.


2015 ◽  
Vol 176 (8) ◽  
pp. 770-790 ◽  
Author(s):  
Amanda E. Fisher ◽  
Lucinda A. McDade ◽  
Carrie A. Kiel ◽  
Roxana Khoshravesh ◽  
Melissa A. Johnson ◽  
...  


2019 ◽  
Author(s):  
Daniel S. Carvalho ◽  
Sunil Kumar Kenchanmane Raju ◽  
Yang Zhang ◽  
James C. Schnable

AbstractThe grass tribe Paniceae includes a monophyletic subclade of species, the MPC clade, which specialize in each of the three primary C4 sub-pathways NADP-ME, NAD-ME and PCK. The evolutionary history of C4 photosynthesis in this subclade remains ambiguous. Leveraging newly sequenced grass genomes and syntenic orthology data, we estimated rates of protein sequence evolution on ancestral branches for both core enzymes shared across different C4 sub-pathways and enzymes specific to C4 sub-pathways. While core enzymes show elevated rates of protein sequence evolution in ancestral branches consistent with a transition from C3 to C4 photosynthesis in the ancestor for this clade, no subtype specific enzymes showed similar patterns. At least one protein involved in photorespiration also showed elevated rates of protein sequence evolution in the ancestral branch. The set of core C4 enzymes examined here combined with the photorespiratory pathway are necessary for the C2 photosynthetic cycle, a previously proposed intermediate between C3 and C4 photosynthesis. The patterns reported here are consistent with, but not conclusive proof that, C4 photosynthesis in the MPC clade of the Paniceae evolved via a C2 intermediate.



2021 ◽  
Author(s):  
Amy Lyu ◽  
Udo Gowik ◽  
Steve Kelly ◽  
Sarah Covshoff ◽  
Harmony Clayton ◽  
...  

Abstract C4 photosynthesis is a remarkable complex trait, elucidations of the evolutionary trajectory of C4 photosynthesis from its ancestral C3 pathway can help us better understand the generic principles of the evolution of complex trait and guide the engineering of C3 crops for higher yields. Here, we used the genus Flaveria that contains C3, C3-C4, C4-like and C4 species as a system to study the evolution of C4 photosynthesis. We first mapped transcript abundance, protein sequence, and morphological features to the phylogenetic tree of the genus Flaveria, and calculated the evolutionary correlation of different features; we then predicted the relative changes of ancestral nodes of those features to illustrate the key stages during the evolution of C4 photosynthesis. We found that gene expression and protein sequence showed consistent modification pattern along the phylogenetic tree. High correlation coefficients ranging from 0.46 to 0.9 among gene expression, protein sequence and morphology were observed, and the greatest modification of those different features consistently occurred at the transition between C3-C4 species and C4-like species. Our results show highly coordinated changes in gene expression, protein sequence and morphological features, which support an obviously evolutionary jump during the evolution of C4 metabolism.



PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8360 ◽  
Author(s):  
Claire B. Tracy ◽  
Janet Nguyen ◽  
Rayna Abraham ◽  
Troy R. Shirangi

Male courtship songs in Drosophila are exceedingly diverse across species. While much of this variation is understood to have evolved from changes in the central nervous system, evolutionary transitions in the wing muscles that control the song may have also contributed to song diversity. Here, focusing on a group of four wing muscles that are known to influence courtship song in Drosophila melanogaster, we investigate the evolutionary history of wing muscle anatomy of males and females from 19 Drosophila species. We find that three of the wing muscles have evolved sexual dimorphisms in size multiple independent times, whereas one has remained monomorphic in the phylogeny. These data suggest that evolutionary changes in wing muscle anatomy may have contributed to species variation in sexually dimorphic wing-based behaviors, such as courtship song. Moreover, wing muscles appear to differ in their propensity to evolve size dimorphisms, which may reflect variation in the functional constraints acting upon different wing muscles.



PLoS Genetics ◽  
2020 ◽  
Vol 16 (11) ◽  
pp. e1009110
Author(s):  
Priscilla A. Erickson ◽  
Cory A. Weller ◽  
Daniel Y. Song ◽  
Alyssa S. Bangerter ◽  
Paul Schmidt ◽  
...  

Organisms living in seasonally variable environments utilize cues such as light and temperature to induce plastic responses, enabling them to exploit favorable seasons and avoid unfavorable ones. Local adapation can result in variation in seasonal responses, but the genetic basis and evolutionary history of this variation remains elusive. Many insects, including Drosophila melanogaster, are able to undergo an arrest of reproductive development (diapause) in response to unfavorable conditions. In D. melanogaster, the ability to diapause is more common in high latitude populations, where flies endure harsher winters, and in the spring, reflecting differential survivorship of overwintering populations. Using a novel hybrid swarm-based genome wide association study, we examined the genetic basis and evolutionary history of ovarian diapause. We exposed outbred females to different temperatures and day lengths, characterized ovarian development for over 2800 flies, and reconstructed their complete, phased genomes. We found that diapause, scored at two different developmental cutoffs, has modest heritability, and we identified hundreds of SNPs associated with each of the two phenotypes. Alleles associated with one of the diapause phenotypes tend to be more common at higher latitudes, but these alleles do not show predictable seasonal variation. The collective signal of many small-effect, clinally varying SNPs can plausibly explain latitudinal variation in diapause seen in North America. Alleles associated with diapause are segregating in Zambia, suggesting that variation in diapause relies on ancestral polymorphisms, and both pro- and anti-diapause alleles have experienced selection in North America. Finally, we utilized outdoor mesocosms to track diapause under natural conditions. We found that hybrid swarms reared outdoors evolved increased propensity for diapause in late fall, whereas indoor control populations experienced no such change. Our results indicate that diapause is a complex, quantitative trait with different evolutionary patterns across time and space.



2018 ◽  
Author(s):  
Ming-Ju Amy Lyu ◽  
Udo Gowik ◽  
Peter Westhoff ◽  
Yimin Tao ◽  
Steve Kelly ◽  
...  

AbstractBackgroundC4 photosynthesis is a remarkable complex trait, elucidations of the evolutionary trajectory of C4 photosynthesis from its ancestral C3 pathway can help us to better understand the generic principles of complex trait evolution and guide engineering of C3 crops for higher yields. We used the genus Flaveria that contains C3, C3-C4, C4-like and C4 species as a system to study the evolution of C4 photosynthesis.ResultsWe mapped transcript abundance, protein sequence, and morphological features to the phylogenetic tree of the genus Flaveria, and calculated the evolutionary correlation of different features. Besides, we predicted the relative changes of ancestral nodes of those features to illustrate the key stages during the evolution of C4 photosynthesis. Gene expression and protein sequence showed consistent modification pattern along the phylogenetic tree. High correlation coefficients ranging from 0.46 to 0.9 among gene expression, protein sequence and morphology were observed, and the greatest modification of those different features consistently occurred at the transition between C3-C4 species and C4-like species.ConclusionsOur data shows highly coordinated changes in gene expression, protein sequence and morphological features. Besides, our results support an obviously evolutionary jump during the evolution of C4 metabolism.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ming-Ju Amy Lyu ◽  
Udo Gowik ◽  
Steve Kelly ◽  
Sarah Covshoff ◽  
Julian M. Hibberd ◽  
...  

AbstractC4 photosynthesis is a remarkable complex trait, elucidations of the evolutionary trajectory of C4 photosynthesis from its ancestral C3 pathway can help us better understand the generic principles of the evolution of complex traits and guide the engineering of C3 crops for higher yields. Here, we used the genus Flaveria that contains C3, C3–C4, C4-like and C4 species as a system to study the evolution of C4 photosynthesis. We first mapped transcript abundance, protein sequence and morphological features onto the phylogenetic tree of the genus Flaveria, and calculated the evolutionary correlation of different features; we then predicted the relative changes of ancestral nodes of those features to illustrate the major events during the evolution of C4 photosynthesis. We found that gene expression and protein sequence showed consistent modification patterns in the phylogenetic tree. High correlation coefficients ranging from 0.46 to 0.9 among gene expression, protein sequence and morphology were observed. The greatest modification of those different features consistently occurred at the transition between C3-C4 species and C4-like species. Our results show highly coordinated changes in gene expression, protein sequence and morphological features, which support evolutionary major events during the evolution of C4 metabolism.



2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.



Sign in / Sign up

Export Citation Format

Share Document