scholarly journals Quantitative Cytogenetics Reveals Molecular Stoichiometry and Longitudinal Organization of Meiotic Chromosome Axes and Loops

2019 ◽  
Author(s):  
Alexander Woglar ◽  
Kei Yamaya ◽  
Baptiste Roelens ◽  
Alistair Boettiger ◽  
Simone Köhler ◽  
...  

ABSTRACTDuring meiosis, chromosomes adopt a specialized organization involving assembly of a cohesin-based axis along their lengths, with DNA loops emanating from this axis. We applied novel, quantitative and widely applicable cytogenetic strategies to elucidate the molecular bases of this organization using C. elegans. Analyses of WT chromosomes and de novo circular mini-chromosomes revealed that meiosis-specific HORMA-domain proteins assemble into cohorts in defined numbers and co-organize the axis together with two functionally-distinct cohesin complexes (REC-8 and COH-3/4) in defined stoichiometry. We further found that REC-8 cohesins, which load during S phase and mediate sister chromatid cohesion, usually occur as individual complexes, supporting a model wherein sister cohesion is mediated locally by a single cohesin ring. REC-8 complexes are interspersed in an alternating pattern with cohorts of axis-organizing COH-3/4 complexes (averaging three per cohort), which are insufficient to confer cohesion but can bind to individual chromatids, suggesting a mechanism to enable formation of asymmetric sister chromatid loops. Indeed, immuno-FISH assays demonstrate frequent asymmetry in genomic content between the loops formed on sister chromatids. We discuss how features of chromosome axis/loop architecture inferred from our data can help to explain enigmatic, yet essential, aspects of the meiotic program.

2008 ◽  
Vol 22 (20) ◽  
pp. 2886-2901 ◽  
Author(s):  
E. Martinez-Perez ◽  
M. Schvarzstein ◽  
C. Barroso ◽  
J. Lightfoot ◽  
A. F. Dernburg ◽  
...  

2003 ◽  
Vol 160 (5) ◽  
pp. 657-670 ◽  
Author(s):  
Maureen Eijpe ◽  
Hildo Offenberg ◽  
Rolf Jessberger ◽  
Ekaterina Revenkova ◽  
Christa Heyting

In meiotic prophase, the sister chromatids of each chromosome develop a common axial element (AE) that is integrated into the synaptonemal complex (SC). We analyzed the incorporation of sister chromatid cohesion proteins (cohesins) and other AE components into AEs. Meiotic cohesin REC8 appeared shortly before premeiotic S phase in the nucleus and formed AE-like structures (REC8-AEs) from premeiotic S phase on. Subsequently, meiotic cohesin SMC1β, cohesin SMC3, and AE proteins SCP2 and SCP3 formed dots along REC8-AEs, which extended and fused until they lined REC8-AEs along their length. In metaphase I, SMC1β, SMC3, SCP2, and SCP3 disappeared from the chromosome arms and accumulated around the centromeres, where they stayed until anaphase II. In striking contrast, REC8 persisted along the chromosome arms until anaphase I and near the centromeres until anaphase II. We propose that REC8 provides a basis for AE formation and that the first steps in AE assembly do not require SMC1β, SMC3, SCP2, and SCP3. Furthermore, SMC1β, SMC3, SCP2, and SCP3 cannot provide arm cohesion during metaphase I. We propose that REC8 then provides cohesion. RAD51 and/or DMC1 coimmunoprecipitates with REC8, suggesting that REC8 may also provide a basis for assembly of recombination complexes.


2009 ◽  
Vol 20 (3) ◽  
pp. 1030-1047 ◽  
Author(s):  
Gloria A. Brar ◽  
Andreas Hochwagen ◽  
Ly-sha S. Ee ◽  
Angelika Amon

Sister chromatid cohesion, mediated by cohesin complexes, is laid down during DNA replication and is essential for the accurate segregation of chromosomes. Previous studies indicated that, in addition to their cohesion function, cohesins are essential for completion of recombination, pairing, meiotic chromosome axis formation, and assembly of the synaptonemal complex (SC). Using mutants in the cohesin subunit Rec8, in which phosphorylated residues were mutated to alanines, we show that cohesin phosphorylation is not only important for cohesin removal, but that cohesin's meiotic prophase functions are distinct from each other. We find pairing and SC formation to be dependent on Rec8, but independent of the presence of a sister chromatid and hence sister chromatid cohesion. We identified mutations in REC8 that differentially affect Rec8's cohesion, pairing, recombination, chromosome axis and SC assembly function. These findings define Rec8 as a key determinant of meiotic chromosome morphogenesis and a central player in multiple meiotic events.


2017 ◽  
Author(s):  
Kim A Nasmyth

SummarySister chromatids are held together from their replication until mitosis. Sister chromatid cohesion is mediated by the ring-shaped cohesin complex and it is thought that cohesin holds sister chromatids together by entrapping sister DNAs within the cohesin ring (Haering et al., 2008). However, how this occurs is not well understood. Because cohesin binds to DNA prior to replication it is possible that the replication fork passes through the lumen of the ring thereby placing replicated sisters inside cohesin rings. If this is the case, loading of cohesin in the G1 phase may be sufficient to build cohesion.We show here that Scc2, a cohesin subunit required for loading cohesin onto chromosomes de novo, is necessary for establishment of cohesion even after Scc2-mediated loading has already taken place during late G1 or early S phase. Our results challenge a previous conclusion based on related experiments whereby Scc2 was found not to be required for cohesion establishment during S phase (Lengronne et al., 2006).


2018 ◽  
Author(s):  
Tisha Bohr ◽  
Christian R. Nelson ◽  
Stefani Giacopazzi ◽  
Piero Lamelza ◽  
Needhi Bhalla

AbstractThe conserved factor Shugoshin is dispensable in C. elegans for the two-step loss of sister chromatid cohesion that directs the proper segregation of meiotic chromosomes. We show that the C. elegans ortholog of Shugoshin, SGO-1, is required for checkpoint activity in meiotic prophase. This role in checkpoint function is similar to that of the meiotic chromosomal protein, HTP-3. Null sgo-1 mutants exhibit additional phenotypes similar to that of a partial loss of function allele of HTP-3: premature synaptonemal complex disassembly, the activation of alternate DNA repair pathways and an inability to recruit a conserved effector of the DNA damage pathway, HUS-1. SGO-1 localizes to pre-meiotic nuclei, when HTP-3 is present but not yet loaded onto chromosome axes, suggesting an early role in regulating meiotic chromosome metabolism. We propose that SGO-1 acts during pre-meiotic replication to ensure fully functional meiotic chromosome architecture, rendering these chromosomes competent for checkpoint activity and normal progression of meiotic recombination. Given that most research on Shugoshin has been focused on its regulation of sister chromatid cohesion in meiosis, this novel role may be conserved but previously uncharacterized in other organisms. Further, our findings expand the repertoire of Shugoshin’s functions beyond coordinating regulatory activities at the centromere.


2021 ◽  
Author(s):  
Rachael E Barton ◽  
Lucia F Massari ◽  
Daniel Robertson ◽  
Adele L Marston

Cohesin organizes the genome by forming intra-chromosomal loops and inter-sister chromatid linkages. During gamete formation by meiosis, chromosomes are reshaped to support crossover recombination and two consecutive rounds of chromosome segregation. Here we show that Eco1 acetyltransferase positions both chromatin loops and sister chromatid cohesion to organize meiotic chromosomes into functional domains in budding yeast. Eco1 acetylates the Smc3 cohesin subunit in meiotic S phase to establish chromatin boundaries, independently of DNA replication. Boundary formation by Eco1 is critical for prophase exit and for the maintenance of cohesion until meiosis II, but is independent of the ability of Eco1 to antagonize the cohesin-release factor, Wpl1. Conversely, prevention of cohesin release by Wpl1 is essential for centromeric cohesion, kinetochore monoorientation and co-segregation of sister chromatids in meiosis I. Our findings establish Eco1 as a key determinant of chromatin boundaries and cohesion positioning, revealing how local chromosome structuring directs genome transmission into gametes.


2000 ◽  
Vol 113 (18) ◽  
pp. 3217-3226 ◽  
Author(s):  
E. Kaszas ◽  
W.Z. Cande

Meiotic chromosome condensation is a unique process, characterized by dramatic changes in chromosome morphology that are required for the correct progression of pairing, synapsis, recombination and segregation of sister chromatids. We used an antibody that recognizes a ser 10 phosphoepitope on histone H3 to monitor H3 phosphorylation during meiosis in maize meiocytes. H3 phosphorylation has been reported to be an excellent marker for chromosome condensation during mitotic prophase in animal cells. In this study, we find that on maize mitotic chromosomes only pericentromeric regions are stained; there is little staining on the arms. During meiosis, chromosome condensation from leptotene through diplotene occurs in the absence of H3 phosphorylation. Instead, the changes in H3 phosphorylation at different stages of meiosis correlate with the differences in requirements for sister chromatid cohesion at different stages. Just before nuclear envelope breakdown, histone H3 phosphorylation is seen first in the pericentromeric regions and then extends through the arms at metaphase I; at metaphase II only the pericentromeric regions are stained. In afd1 (absence of first division), a mutant that is defective in many aspects of meiosis including sister chromatid cohesion and has equational separation at metaphase I, staining is restricted to the pericentromeric regions during metaphase I and anaphase I; there is no staining at metaphase II or anaphase II. We conclude that changes in the level of phosphorylation of ser10 in H3 correspond to changes in the cohesion of sister chromatids rather than the extent of chromosome condensation at different stages of meiosis.


Open Biology ◽  
2016 ◽  
Vol 6 (6) ◽  
pp. 150178 ◽  
Author(s):  
Maria Ocampo-Hafalla ◽  
Sofía Muñoz ◽  
Catarina P. Samora ◽  
Frank Uhlmann

The ring-shaped cohesin complex is thought to topologically hold sister chromatids together from their synthesis in S phase until chromosome segregation in mitosis. How cohesin stably binds to chromosomes for extended periods, without impeding other chromosomal processes that also require access to the DNA, is poorly understood. Budding yeast cohesin is loaded onto DNA by the Scc2–Scc4 cohesin loader at centromeres and promoters of active genes, from where cohesin translocates to more permanent places of residence at transcription termination sites. Here we show that, at the GAL2 and MET17 loci, pre-existing cohesin is pushed downstream along the DNA in response to transcriptional gene activation, apparently without need for intermittent dissociation or reloading. We observe translocation intermediates and find that the distribution of most chromosomal cohesin is shaped by transcription. Our observations support a model in which cohesin is able to slide laterally along chromosomes while maintaining topological contact with DNA. In this way, stable cohesin binding to DNA and enduring sister chromatid cohesion become compatible with simultaneous underlying chromosomal activities, including but maybe not limited to transcription.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ge Zheng ◽  
Mohammed Kanchwala ◽  
Chao Xing ◽  
Hongtao Yu

DNA replication transforms cohesin rings dynamically associated with chromatin into the cohesive form to establish sister-chromatid cohesion. Here, we show that, in human cells, cohesin loading onto chromosomes during early S phase requires the replicative helicase MCM2–7 and the kinase DDK. Cohesin and its loader SCC2/4 (NIPBL/MAU2 in humans) associate with DDK and phosphorylated MCM2–7. This binding does not require MCM2–7 activation by CDC45 and GINS, but its persistence on activated MCM2–7 requires fork-stabilizing replisome components. Inactivation of these replisome components impairs cohesin loading and causes interphase cohesion defects. Interfering with Okazaki fragment processing or nucleosome assembly does not impact cohesion. Therefore, MCM2–7-coupled cohesin loading promotes cohesion establishment, which occurs without Okazaki fragment maturation. We propose that the cohesin–loader complex bound to MCM2–7 is mobilized upon helicase activation, transiently held by the replisome, and deposited behind the replication fork to encircle sister chromatids and establish cohesion.


2009 ◽  
Vol 186 (5) ◽  
pp. 713-725 ◽  
Author(s):  
Hui Jin ◽  
Vincent Guacci ◽  
Hong-Guo Yu

During meiosis, homologues become juxtaposed and synapsed along their entire length. Mutations in the cohesin complex disrupt not only sister chromatid cohesion but also homologue pairing and synaptonemal complex formation. In this study, we report that Pds5, a cohesin-associated protein known to regulate sister chromatid cohesion, is required for homologue pairing and synapsis in budding yeast. Pds5 colocalizes with cohesin along the length of meiotic chromosomes. In the absence of Pds5, the meiotic cohesin subunit Rec8 remains bound to chromosomes with only minor defects in sister chromatid cohesion, but sister chromatids synapse instead of homologues. Double-strand breaks (DSBs) are formed but are not repaired efficiently. In addition, meiotic chromosomes undergo hypercondensation. When the mitotic cohesin subunit Mcd1 is substituted for Rec8 in Pds5-depleted cells, chromosomes still hypercondense, but synapsis of sister chromatids is abolished. These data suggest that Pds5 modulates the Rec8 activity to facilitate chromosome morphological changes required for homologue synapsis, DSB repair, and meiotic chromosome segregation.


Sign in / Sign up

Export Citation Format

Share Document