scholarly journals Miswired enhancer logic drives translocation positive rhabdomyosarcoma

2019 ◽  
Author(s):  
Berkley E. Gryder ◽  
Marco Wachtel ◽  
Kenneth Chang ◽  
Osama El Demerdash ◽  
Nicholas G. Aboreden ◽  
...  

AbstractCore regularity transcription factors (CR TFs) define cell identity and lineage through an exquisitely precise and logical order during embryogenesis and development. These CR TFs regulate one another in three-dimensional space via distal enhancers that serve as logic gates embedded in their TF recognition sequences. Aberrant chromatin organization resulting in miswired circuitry of enhancer logic is a newly recognized feature in many cancers. Here, we report that PAX3-FOXO1 expression is driven by a translocated FOXO1 distal super enhancer (SE). Using 4C-seq, a technique detecting all genomic regions that interact with the translocated FOXO1 SE, we demonstrate its physical interaction with the PAX3 promotor only in the presence of the oncogenic translocation. Furthermore, RNA-seq and ChIP-seq in tumors bearing rare PAX translocations implicate enhancer miswiring is a pervasive feature across all FP-RMS tumors. HiChIP of enhancer mark H3K27ac showed extended connectivity between the distal FOXO1 SE and additional intra-domain enhancers and the PAX3 promoter. We show by CRISPR-paired-ChIP-Rx that PAX3-FOXO1 transcription is diminished when this network of enhancers is selectively ablated. Therefore, our data reveal a mechanism of a translocated hijacked enhancer which disrupts the normal CR TF logic during skeletal muscle development (PAX3 to MYOD to MYOG), replacing it with an infinite loop logic that locks rhabdomyosarcoma cells in an undifferentiated proliferating stage.

1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


i-com ◽  
2020 ◽  
Vol 19 (2) ◽  
pp. 67-85
Author(s):  
Matthias Weise ◽  
Raphael Zender ◽  
Ulrike Lucke

AbstractThe selection and manipulation of objects in Virtual Reality face application developers with a substantial challenge as they need to ensure a seamless interaction in three-dimensional space. Assessing the advantages and disadvantages of selection and manipulation techniques in specific scenarios and regarding usability and user experience is a mandatory task to find suitable forms of interaction. In this article, we take a look at the most common issues arising in the interaction with objects in VR. We present a taxonomy allowing the classification of techniques regarding multiple dimensions. The issues are then associated with these dimensions. Furthermore, we analyze the results of a study comparing multiple selection techniques and present a tool allowing developers of VR applications to search for appropriate selection and manipulation techniques and to get scenario dependent suggestions based on the data of the executed study.


2021 ◽  
Vol 1111 (1) ◽  
pp. 012034
Author(s):  
N A Maksimov ◽  
K Zhigalov ◽  
A V Gorban ◽  
I V Ignatev

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 20100-20116
Author(s):  
Xianjin Zhou ◽  
Fei Gao ◽  
Xi Fang ◽  
Zehong Lan

Sign in / Sign up

Export Citation Format

Share Document