scholarly journals A native prokaryotic voltage-dependent calcium channel with a novel selectivity filter sequence

2019 ◽  
Author(s):  
Takushi Shimomura ◽  
Yoshiki Yonekawa ◽  
Hitoshi Nagura ◽  
Michihiro Tateyama ◽  
Yoshinori Fujiyoshi ◽  
...  

AbstractVoltage-dependent Ca2+ channels (Cavs) are indispensable for coupling action potentials with Ca2+ signaling in living organisms. The structure of Cavs is similar to that of voltage-dependent Na+ channels (Navs). It is known that prokaryotic Navs can obtain Ca2+ selectivity by negative charge mutations of the selectivity filter, but native prokaryotic Cavs had not yet been identified.Here, we report the first identification of a native prokaryotic Cav, CavMr, and its relative, NavPp. Although CavMr contains a smaller number of negatively charged residues in the selectivity filter than artificial prokaryotic Cavs, CavMr exhibits high Ca2+ selectivity. In contrast, NavPp, which has similar filter sequence to artificial Cavs, mainly allows Na+ to permeate. Interestingly, a NavPp mutant whose selectivity filter was replaced with that of CavMr exhibits high Ca2+ selectivity. Mutational analyses revealed that the glycine residue of the CavMr selectivity filter is a determinant for Ca2+ selectivity. This glycine residue is well conserved among subdomains I and III of eukaryotic Cavs.These findings provide new insight into the Ca2+ selectivity mechanism conserved from prokaryotes to eukaryotes.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Takushi Shimomura ◽  
Yoshiki Yonekawa ◽  
Hitoshi Nagura ◽  
Michihiro Tateyama ◽  
Yoshinori Fujiyoshi ◽  
...  

Voltage-dependent Ca2+ channels (Cavs) are indispensable for coupling action potentials with Ca2+ signaling in living organisms. The structure of Cavs is similar to that of voltage-dependent Na+ channels (Navs). It is known that prokaryotic Navs can obtain Ca2+ selectivity by negative charge mutations of the selectivity filter, but native prokaryotic Cavs had not yet been identified. We report the first identification of a native prokaryotic Cav, CavMr, whose selectivity filter contains a smaller number of negatively charged residues than that of artificial prokaryotic Cavs. A relative mutant whose selectivity filter was replaced with that of CavMr exhibits high Ca2+ selectivity. Mutational analyses revealed that the glycine residue of the CavMr selectivity filter is a determinant for Ca2+ selectivity. This glycine residue is well conserved among subdomains I and III of eukaryotic Cavs. These findings provide new insight into the Ca2+ selectivity mechanism that is conserved from prokaryotes to eukaryotes.


2019 ◽  
Author(s):  
Takushi Shimomura ◽  
Yoshiki Yonekawa ◽  
Hitoshi Nagura ◽  
Michihiro Tateyama ◽  
Yoshinori Fujiyoshi ◽  
...  

1999 ◽  
Vol 268 (2) ◽  
pp. 77-80 ◽  
Author(s):  
Masahiko Kase ◽  
Shingo Kakimoto ◽  
Satoru Sakuma ◽  
Takeshi Houtani ◽  
Hitoshi Ohishi ◽  
...  

2007 ◽  
Vol 97 (5) ◽  
pp. 3731-3735 ◽  
Author(s):  
Jiang Wu ◽  
Alan D. Marmorstein ◽  
Jörg Striessnig ◽  
Neal S. Peachey

In response to light, the mouse retinal pigment epithelium (RPE) generates a series of slow changes in potential that are referred to as the c-wave, fast oscillation (FO), and light peak (LP) of the electroretinogram (ERG). The LP is generated by a depolarization of the basolateral RPE plasma membrane by the activation of a calcium-sensitive chloride conductance. We have previously shown that the LP is reduced in both mice and rats by nimodipine, which blocks voltage-dependent calcium channels (VDCCs) and is abnormal in lethargic mice, carrying a null mutation in the calcium channel β4 subunit. To define the α1 subunit involved in this process, we examined mice lacking CaV1.3. In comparison with wild-type (WT) control littermates, LPs were reduced in CaV1.3−/− mice. This pattern matched closely with that previously noted in lethargic mice, confirming a role for VDCCs in regulating the signaling pathway that culminates in LP generation. These abnormalities do not reflect a defect in rod photoreceptor activity, which provides the input to the RPE to generate the c-wave, FO, and LP, because ERG a-waves were comparable in WT and CaV1.3−/− littermates. Our results identify CaV1.3 as the principal pore-forming subunit of VDCCs involved in stimulating the ERG LP.


2010 ◽  
Vol 68 ◽  
pp. e110
Author(s):  
Dwi Wahyu Indriati ◽  
Naomi Kamasawa ◽  
Masahiko Watanabe ◽  
Ryuichi Shigemoto

Sign in / Sign up

Export Citation Format

Share Document