scholarly journals Symbolic Information Flow Measurement (SIFM): A Software for Measurement of Information Flow Using Symbolic Analysis

2019 ◽  
Author(s):  
Dhurata Nebiu ◽  
Hiqmet Kamberaj

AbstractSymbolic Information Flow Measurement software is used to compute the information flow between different components of a dynamical system or different dynamical systems using symbolic transfer entropy. Here, the time series represents the time evolution trajectory of a component of the dynamical system. Different methods are used to perform a symbolic analysis of the time series based on the coarse-graining approach by computing the so-called embedding parameters. Information flow is measured in terms of the so-called average symbolic transfer entropy and local symbolic transfer entropy. Besides, a new measure of mutual information is introduced based on the symbolic analysis, called symbolic mutual information.

2013 ◽  
Vol 12 (04) ◽  
pp. 1350019 ◽  
Author(s):  
XUEJIAO WANG ◽  
PENGJIAN SHANG ◽  
JINGJING HUANG ◽  
GUOCHEN FENG

Recently, an information theoretic inspired concept of transfer entropy has been introduced by Schreiber. It aims to quantify in a nonparametric and explicitly nonsymmetric way the flow of information between two time series. This model-free based on Shannon entropy approach in principle allows us to detect statistical dependencies of all types, i.e., linear and nonlinear temporal correlations. However, we always analyze the transfer entropy based on the data, which is discretized into three partitions by some coarse graining. Naturally, we are interested in investigating the effect of the data discretization of the two series on the transfer entropy. In our paper, we analyze the results based on the data which are generated by the linear modeling and the ARFIMA modeling, as well as the dataset consists of seven indices during the period 1992–2002. The results show that the higher the degree of data discretization get, the larger the value of the transfer entropy will be, besides, the direction of the information flow is unchanged along with the degree of data discretization.


2011 ◽  
Vol 12 (1) ◽  
pp. 119 ◽  
Author(s):  
Michael Lindner ◽  
Raul Vicente ◽  
Viola Priesemann ◽  
Michael Wibral

2020 ◽  
pp. 1-32
Author(s):  
Leonardo Novelli ◽  
Joseph T. Lizier

Functional and effective networks inferred from time series are at the core of network neuroscience. Interpreting properties of these networks requires inferred network models to reflect key underlying structural features. However, even a few spurious links can severely distort network measures, posing a challenge for functional connectomes. We study the extent to which micro- and macroscopic properties of underlying networks can be inferred by algorithms based on mutual information and bivariate/multivariate transfer entropy. The validation is performed on two macaque connectomes and on synthetic networks with various topologies (regular lattice, small-world, random, scale-free, modular). Simulations are based on a neural mass model and on autoregressive dynamics (employing Gaussian estimators for direct comparison to functional connectivity and Granger causality). We find that multivariate transfer entropy captures key properties of all network structures for longer time series. Bivariate methods can achieve higher recall (sensitivity) for shorter time series but are unable to control false positives (lower specificity) as available data increases. This leads to overestimated clustering, small-world, and rich-club coefficients, underestimated shortest path lengths and hub centrality, and fattened degree distribution tails. Caution should therefore be used when interpreting network properties of functional connectomes obtained via correlation or pairwise statistical dependence measures, rather than more holistic (yet data-hungry) multivariate models.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1331
Author(s):  
Giancarlo Nicola ◽  
Paola Cerchiello ◽  
Tomaso Aste

In this work we investigate whether information theory measures like mutual information and transfer entropy, extracted from a bank network, Granger cause financial stress indexes like LIBOR-OIS (London Interbank Offered Rate-Overnight Index Swap) spread, STLFSI (St. Louis Fed Financial Stress Index) and USD/CHF (USA Dollar/Swiss Franc) exchange rate. The information theory measures are extracted from a Gaussian Graphical Model constructed from daily stock time series of the top 74 listed US banks. The graphical model is calculated with a recently developed algorithm (LoGo) which provides very fast inference model that allows us to update the graphical model each market day. We therefore can generate daily time series of mutual information and transfer entropy for each bank of the network. The Granger causality between the bank related measures and the financial stress indexes is investigated with both standard Granger-causality and Partial Granger-causality conditioned on control measures representative of the general economy conditions.


SoftwareX ◽  
2019 ◽  
Vol 10 ◽  
pp. 100265 ◽  
Author(s):  
Simon Behrendt ◽  
Thomas Dimpfl ◽  
Franziska J. Peter ◽  
David J. Zimmermann

2008 ◽  
Vol 33 (4) ◽  
pp. 27-46 ◽  
Author(s):  
Y V Reddy ◽  
A Sebastin

Interactions between the foreign exchange market and the stock market of a country are considered to be an important internal force of the markets in a financially liberalized environment. If causal relationship from a market to the other is not detected, then informational efficiency exists in the other whereas existence of causality implies that hedging of exposure to one market by taking position in the other market will be effective. The temporal relationship between the forex market and the stock market of developing and developed countries has been studied, especially after the East Asian financial crisis of 1997–98, using various methods like cross-correlation, cross-spectrum, and error correction model, but these methods identify only linear relations. A statistically rigorous approach to the detection of interdependence, including non-linear dynamic relationships, between time series is provided by tools defined using the information theoretic concept of entropy. Entropy is the amount of disorder in the system and also is the amount of information needed to predict the next measurement with a certain precision. The mutual information between two random variables X and Y with a joint probability mass function p(x,y) and marginal mass functions p(x) and p(y), is defined as the relative entropy between the joint distribution p(x,y) and the product distribution p(x)*p(y). Mutual information is the reduction in the uncertainty of X due to the knowledge of Y and vice versa. Since mutual information measures the deviation from independence of the variables, it has been proposed as a tool to measure the relationship between financial market segments. However, mutual information is a symmetric measure and does not contain either dynamic information or directional sense. Even time delayed mutual information does not distinguish information actually exchanged from shared information due to a common input signal or history and therefore does not quantify the actual overlap of the information content of two variables. Another information theoretic measure called transfer entropy has been introduced by Thomas Schreiber (2000) to study the relationship between dynamic systems; the concept has also been applied by some authors to study the causal structure between financial time series. In this paper, an attempt has been made to study the interaction between the stock and the forex markets in India by computing transfer entropy between daily data series of the 50 stock index of the National Stock Exchange of India Limited, viz., Nifty and the exchange rate of Indian Rupee vis- à- vis US Dollar, viz., Reserve Bank of India reference rate. The entire period–November 1995 to March 2007–selected for the study, has been divided into three sub-periods for the purpose of analysis, considering the developments that took place during these sub-periods. The results obtained reveal that: there exist only low level interactions between the stock and the forex markets of India at a time scale of a day or less, although theory suggests interactive relationship between the two markets the flow from the stock market to the forex market is more pronounced than the flow in the reverse direction.


Sign in / Sign up

Export Citation Format

Share Document