scholarly journals Apparent Propagator Anisotropy from reduced Diffusion MRI acquisitions

2019 ◽  
Author(s):  
Santiago Aja-Fernández ◽  
Antonio Tristán-Vega ◽  
Derek Jones

AbstractThe Propagator Anisotropy (PA) is a measurement of the orientational variability inside a tissue estimated from diffusion MRI using the Ensemble Average diffusion Propagator (EAP). It is based on the quantification of the angular difference between the propagator in a specific voxel and its isotropic counterpart. The PA has shown the ability to reveal microstructural information of interest and meaningful descriptive maps inside the white matter. However, the use of PA is not generalized among the clinical community, due to the great amount of data needed for its calculation, together with the associated long processing times. In order to calculate the PA, the EAP must also be properly estimated. This task would require a dense sampling of the Cartesian q-space. Alternatively, more efficient techniques have been proposed in the last decade. Even so, all of them imply acquiring a large number of diffusion gradients with different b-values and long processing times.In this work, we propose an alternative implementation to drastically reduce the number of samples needed, as well as boosting the estimation procedure. We avoid the calculation of the whole EAP by assuming that the diffusion anisotropy is roughly independent from the radial direction. With such an assumption, we achieve a closed-form expression for a measure similar to the PA but using information from one single shell: the Apparent Propagator Anisotropy (APA). The new measure remains compatible with standard acquisition protocols commonly used for HARDI (based on just one b-value). The intention of the APA is not to exactly replicate the PA but inferring microstructural information with comparable discrimination power as the PA but using a reduced amount of data.We report extensive results showing that the proposed measures present a robust behavior in clinical studies and they are computationally efficient and robust when compared with PA and other anisotropy measures.

2019 ◽  
Author(s):  
Santiago Aja-Fernández ◽  
Rodrigo de Luis-García ◽  
Maryam Afzali ◽  
Malwina Molendowska ◽  
Tomasz Pieciak ◽  
...  

AbstractIn diffusion MRI, the Ensemble Average diffusion Propagator (EAP) provides relevant microstructural information and meaningful descriptive maps of the white matter previously obscured by traditional techniques like the Diffusion Tensor. The direct estimation of the EAP, however, requires a dense sampling of the Cartesian q-space. Due to the huge amount of samples needed for an accurate reconstruction, more efficient alternative techniques have been proposed in the last decade. Even so, all of them imply acquiring a large number of diffusion gradients with different b-values. In order to use the EAP in practical studies, scalar measures must be directly derived, being the most common the return-to-origin probability (RTOP) and the return-to-plane and return-to-axis probabilities (RTPP, RTAP).In this work, we propose the so-called “Apparent Measures Using Reduced Acquisitions” (AMURA) to drastically reduce the number of samples needed for the estimation of diffusion properties. AMURA avoids the calculation of the whole EAP by assuming the diffusion anisotropy is roughly independent from the radial direction. With such an assumption, and as opposed to common multi-shell procedures based on iterative optimization, we achieve closed-form expressions for the measures using information from one single shell. This way, the new methodology remains compatible with standard acquisition protocols commonly used for HARDI (based on just one b-value). We report extensive results showing the potential of AMURA to reveal microstructural properties of the tissues compared to state of the art EAP estimators, and is well above that of Diffusion Tensor techniques. At the same time, the closed forms provided for RTOP, RTPP, and RTAP-like magnitudes make AMURA both computationally efficient and robust.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yassine Zouaoui ◽  
Larbi Talbi ◽  
Khelifa Hettak ◽  
Naresh K. Darimireddy

2021 ◽  
Vol 48 (3) ◽  
pp. 91-96
Author(s):  
Shigeo Shioda

The consensus achieved in the consensus-forming algorithm is not generally a constant but rather a random variable, even if the initial opinions are the same. In the present paper, we investigate the statistical properties of the consensus in a broadcasting-based consensus-forming algorithm. We focus on two extreme cases: consensus forming by two agents and consensus forming by an infinite number of agents. In the two-agent case, we derive several properties of the distribution function of the consensus. In the infinite-numberof- agents case, we show that if the initial opinions follow a stable distribution, then the consensus also follows a stable distribution. In addition, we derive a closed-form expression of the probability density function of the consensus when the initial opinions follow a Gaussian distribution, a Cauchy distribution, or a L´evy distribution.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Vivek Kumar Singh ◽  
Rama Mishra ◽  
P. Ramadevi

Abstract Weaving knots W(p, n) of type (p, n) denote an infinite family of hyperbolic knots which have not been addressed by the knot theorists as yet. Unlike the well known (p, n) torus knots, we do not have a closed-form expression for HOMFLY-PT and the colored HOMFLY-PT for W(p, n). In this paper, we confine to a hybrid generalization of W(3, n) which we denote as $$ {\hat{W}}_3 $$ W ̂ 3 (m, n) and obtain closed form expression for HOMFLY-PT using the Reshitikhin and Turaev method involving $$ \mathrm{\mathcal{R}} $$ ℛ -matrices. Further, we also compute [r]-colored HOMFLY-PT for W(3, n). Surprisingly, we observe that trace of the product of two dimensional $$ \hat{\mathrm{\mathcal{R}}} $$ ℛ ̂ -matrices can be written in terms of infinite family of Laurent polynomials $$ {\mathcal{V}}_{n,t}\left[q\right] $$ V n , t q whose absolute coefficients has interesting relation to the Fibonacci numbers $$ {\mathrm{\mathcal{F}}}_n $$ ℱ n . We also computed reformulated invariants and the BPS integers in the context of topological strings. From our analysis, we propose that certain refined BPS integers for weaving knot W(3, n) can be explicitly derived from the coefficients of Chebyshev polynomials of first kind.


2021 ◽  
Vol 34 (4) ◽  
Author(s):  
M. Muge Karaman ◽  
Jiaxuan Zhang ◽  
Karen L. Xie ◽  
Wenzhen Zhu ◽  
Xiaohong Joe Zhou

Author(s):  
M.J. Cañavate-Sánchez ◽  
A. Segneri ◽  
S. Godi ◽  
A. Georgiadis ◽  
S. Kosmopoulos ◽  
...  

2004 ◽  
Vol 40 (19) ◽  
pp. 1192 ◽  
Author(s):  
J. Pérez ◽  
J. Ibáñez ◽  
L. Vielva ◽  
I. Santamaría

Sign in / Sign up

Export Citation Format

Share Document