scholarly journals On the correspondence of electrical and optical physiology in in vivo population-scale two-photon calcium imaging

2019 ◽  
Author(s):  
Peter Ledochowitsch ◽  
Lawrence Huang ◽  
Ulf Knoblich ◽  
Michael Oliver ◽  
Jerome Lecoq ◽  
...  

AbstractMultiphoton calcium imaging is commonly used to monitor the spiking of large populations of neurons. Recovering action potentials from fluorescence necessitates calibration experiments, often with simultaneous imaging and cell-attached recording. Here we performed calibration for imaging conditions matching those of the Allen Brain Observatory. We developed a novel crowd-sourced, algorithmic approach to quality control. Our final data set was 50 recordings from 35 neurons in 3 mouse lines. Our calibration indicated that 3 or more spikes were required to produce consistent changes in fluorescence. Moreover, neither a simple linear model nor a more complex biophysical model accurately predicted fluorescence for small numbers of spikes (1-3). We observed increases in fluorescence corresponding to prolonged depolarizations, particularly in Emx1-IRES-Cre mouse line crosses. Our results indicate that deriving spike times from fluorescence measurements may be an intractable problem in some mouse lines.

2015 ◽  
Vol 35 (31) ◽  
pp. 10927-10939 ◽  
Author(s):  
O. Barnstedt ◽  
P. Keating ◽  
Y. Weissenberger ◽  
A. J. King ◽  
J. C. Dahmen

2013 ◽  
Vol 110 (1) ◽  
pp. 243-256 ◽  
Author(s):  
Jakub Tomek ◽  
Ondrej Novak ◽  
Josef Syka

Two-Photon Processor (TPP) is a versatile, ready-to-use, and freely available software package in MATLAB to process data from in vivo two-photon calcium imaging. TPP includes routines to search for cell bodies in full-frame (Search for Neural Cells Accelerated; SeNeCA) and line-scan acquisition, routines for calcium signal calculations, filtering, spike-mining, and routines to construct parametric fields. Searching for somata in artificial in vivo data, our algorithm achieved better performance than human annotators. SeNeCA copes well with uneven background brightness and in-plane motion artifacts, the major problems in simple segmentation methods. In the fast mode, artificial in vivo images with a resolution of 256 × 256 pixels containing ∼100 neurons can be processed at a rate up to 175 frames per second (tested on Intel i7, 8 threads, magnetic hard disk drive). This speed of a segmentation algorithm could bring new possibilities into the field of in vivo optophysiology. With such a short latency (down to 5–6 ms on an ordinary personal computer) and using some contemporary optogenetic tools, it will allow experiments in which a control program can continuously evaluate the occurrence of a particular spatial pattern of activity (a possible correlate of memory or cognition) and subsequently inhibit/stimulate the entire area of the circuit or inhibit/stimulate a different part of the neuronal system. TPP will be freely available on our public web site. Similar all-in-one and freely available software has not yet been published.


2019 ◽  
Author(s):  
Shigenori Inagaki ◽  
Ryo Iwata ◽  
Masakazu Iwamoto ◽  
Takeshi Imai

SUMMARYSensory information is selectively or non-selectively inhibited and enhanced in the brain, but it remains unclear whether this occurs commonly at the peripheral stage. Here, we performed two-photon calcium imaging of mouse olfactory sensory neurons (OSNs) in vivo and found that odors produce not only excitatory but also inhibitory responses at their axon terminals. The inhibitory responses remained in mutant mice, in which all possible sources of presynaptic lateral inhibition were eliminated. Direct imaging of the olfactory epithelium revealed widespread inhibitory responses at OSN somata. The inhibition was in part due to inverse agonism toward the odorant receptor. We also found that responses to odor mixtures are often suppressed or enhanced in OSNs: Antagonism was dominant at higher odor concentrations, whereas synergy was more prominent at lower odor concentrations. Thus, odor responses are extensively tuned by inhibition, antagonism, and synergy, at the early peripheral stage, contributing to robust odor representations.


2018 ◽  
Author(s):  
Michael Wenzel ◽  
Jordan P. Hamm ◽  
Darcy S. Peterka ◽  
Rafael MD Yuste

AbstractUnderstanding seizure formation and spread remains a critical goal of epilepsy research. While many studies have documented seizure spread, it remains mysterious how they start. We used fast in-vivo two-photon calcium imaging to reconstruct, at cellular resolution, the dynamics of focal cortical seizures as they emerge in epileptic foci (intrafocal), and subsequently propagate (extrafocal). We find that seizures start as intrafocal coactivation of small numbers of neurons (ensembles), which are electrographically silent. These silent “microseizures” expand saltatorily until they break into neighboring cortex, where they progress smoothly and first become detectable by LFP. Surprisingly, we find spatially heterogeneous calcium dynamics of local PV interneuron sub-populations, which rules out a simple role of inhibitory neurons during seizures. We propose a two-step model for the circuit mechanisms of focal seizures, where neuronal ensembles first generate a silent microseizure, followed by widespread neural activation in a travelling wave, which is then detected electrophysiologically.


2017 ◽  
pp. 531-537 ◽  
Author(s):  
F. NADRIGNY ◽  
K. LE MEUR ◽  
E. D. SCHOMBURG ◽  
S. SAFAVI-ABBASI ◽  
P. DIBAJ

We developed appropriate surgical procedures for single and repetitive multi-photon imaging of spinal cord in vivo. By intravenous anesthesia, artificial ventilation and laminectomy, acute experiments were performed in the dorsal and lateral white matter. By volatile anesthesia and minimal-invasive surgery, chronic repetitive imaging up to 8 months was performed in the dorsal column through the window between two adjacent spines. Transgenic mouse technology enabled simultaneous imaging of labeled axons, astrocytes and microglia. Repetitive imaging showed positional shifts of microglia over time. These techniques serve for investigations of cellular dynamics and cell-cell interactions in intact and pathologically changed spinal tissue.


2018 ◽  
Author(s):  
Gal Mishne ◽  
Ronald R. Coifman ◽  
Maria Lavzin ◽  
Jackie Schiller

AbstractRecent advances in experimental methods in neuroscience enable measuring in-vivo activity of large populations of neurons at cellular level resolution. To leverage the full potential of these complex datasets and analyze the dynamics of individual neurons, it is essential to extract high-resolution regions of interest, while addressing demixing of overlapping spatial components and denoising of the temporal signal of each neuron. In this paper, we propose a data-driven solution to these challenges, by representing the spatiotemporal volume as a graph in the image plane. Based on the spectral embedding of this graph calculated across trials, we propose a new clustering method, Local Selective Spectral Clustering, capable of handling overlapping clusters and disregarding clutter. We also present a new nonlinear mapping which recovers the structural map of the neurons and dendrites, and global video denoising. We demonstrate our approach on in-vivo calcium imaging of neurons and apical dendrites, automatically extracting complex structures in the image domain, and denoising and demixing their time-traces.


2019 ◽  
Vol 116 (17) ◽  
pp. 8554-8563 ◽  
Author(s):  
Somayyeh Soltanian-Zadeh ◽  
Kaan Sahingur ◽  
Sarah Blau ◽  
Yiyang Gong ◽  
Sina Farsiu

Calcium imaging records large-scale neuronal activity with cellular resolution in vivo. Automated, fast, and reliable active neuron segmentation is a critical step in the analysis workflow of utilizing neuronal signals in real-time behavioral studies for discovery of neuronal coding properties. Here, to exploit the full spatiotemporal information in two-photon calcium imaging movies, we propose a 3D convolutional neural network to identify and segment active neurons. By utilizing a variety of two-photon microscopy datasets, we show that our method outperforms state-of-the-art techniques and is on a par with manual segmentation. Furthermore, we demonstrate that the network trained on data recorded at a specific cortical layer can be used to accurately segment active neurons from another layer with different neuron density. Finally, our work documents significant tabulation flaws in one of the most cited and active online scientific challenges in neuron segmentation. As our computationally fast method is an invaluable tool for a large spectrum of real-time optogenetic experiments, we have made our open-source software and carefully annotated dataset freely available online.


2019 ◽  
Vol 36 (5) ◽  
pp. 545-553 ◽  
Author(s):  
Yajie Tang ◽  
Liang Li ◽  
Leqiang Sun ◽  
Jinsong Yu ◽  
Zhe Hu ◽  
...  

2014 ◽  
Vol 2014 (4) ◽  
pp. pdb.prot081455 ◽  
Author(s):  
Kenichi Ohki ◽  
R. Clay Reid

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Sebastian A Vasquez-Lopez ◽  
Yves Weissenberger ◽  
Michael Lohse ◽  
Peter Keating ◽  
Andrew J King ◽  
...  

Topographic representation of the receptor surface is a fundamental feature of sensory cortical organization. This is imparted by the thalamus, which relays information from the periphery to the cortex. To better understand the rules governing thalamocortical connectivity and the origin of cortical maps, we used in vivo two-photon calcium imaging to characterize the properties of thalamic axons innervating different layers of mouse auditory cortex. Although tonotopically organized at a global level, we found that the frequency selectivity of individual thalamocortical axons is surprisingly heterogeneous, even in layers 3b/4 of the primary cortical areas, where the thalamic input is dominated by the lemniscal projection. We also show that thalamocortical input to layer 1 includes collaterals from axons innervating layers 3b/4 and is largely in register with the main input targeting those layers. Such locally varied thalamocortical projections may be useful in enabling rapid contextual modulation of cortical frequency representations.


Sign in / Sign up

Export Citation Format

Share Document