scholarly journals RNA-binding protein altered expression and mislocalization in multiple sclerosis

2019 ◽  
Author(s):  
Katsuhisa Masaki ◽  
Yoshifumi Sonobe ◽  
Ghanashyam Ghadge ◽  
Peter Pytel ◽  
Paula Lépine ◽  
...  

AbstractObjectiveNuclear depletion and mislocalization of RNA-binding proteins (RBPs) trans-activation response DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS) are thought to contribute to the pathogenesis of a number of disorders, including amyotrophic lateral sclerosis (ALS). We recently found that TDP-43 as well as polypyrimidine tract binding protein (PTB) have decreased expression and mislocalization in oligodendrocytes in demyelinated lesions in an experimental mouse model of multiple sclerosis (MS) caused by Theiler’s murine encephalomyelitis virus infection.MethodsThe latter finding prompted us to investigate TDP-43, FUS, and PTB in the demyelinated lesions of MS and in in vitro cultured human brain-derived oligodendrocytes.ResultsWe found: i) mislocalized TDP-43 in oligodendrocytes in active lesions in some MS patients; ii) decreased PTB1 expression in oligodendrocytes in mixed active/inactive demyelinating lesions; iii) decreased nuclear expression of PTB2 in neurons in cortical demyelinating lesions; iv) nuclear depletion of TDP-43 in oligodendrocytes under metabolic stress induced by low glucose/low nutrient conditions compared to optimal culture conditions.ConclusionTDP-43 has been found to have a key role in oligodendrocyte function and viability, while PTB is important in neuronal differentiation, suggesting that altered expression and mislocalization of these RBPs in MS lesions may contribute to the pathogenesis of demyelination and neurodegeneration. Our findings also identify nucleocytoplasmic transport as a target for treatment.

2020 ◽  
Vol 7 (3) ◽  
pp. e704 ◽  
Author(s):  
Katsuhisa Masaki ◽  
Yoshifumi Sonobe ◽  
Ghanashyam Ghadge ◽  
Peter Pytel ◽  
Paula Lépine ◽  
...  

ObjectiveTo determine whether there are nuclear depletion and cellular mislocalization of RNA-binding proteins (RBPs) transactivation response DNA-binding protein of 43 kDa (TDP-43), fused in sarcoma (FUS), and polypyrimidine tract–binding protein (PTB) in MS, as is the case in amyotrophic lateral sclerosis (ALS) and oligodendrocytes infected with Theiler murine encephalomyelitis virus (TMEV), we examined MS lesions and in vitro cultured primary human brain–derived oligodendrocytes.MethodsNuclear depletion and mislocalization of TDP-43, FUS, and PTB are thought to contribute to the pathogenesis of ALS and TMEV demyelination. The latter findings prompted us to investigate these RBPs in the demyelinated lesions of MS and in in vitro cultured human brain–derived oligodendrocytes under metabolic stress conditions.ResultsWe found (1) mislocalized TDP-43 in oligodendrocytes in active lesions in some patients with MS; (2) decreased PTB1 expression in oligodendrocytes in mixed active/inactive demyelinating lesions; (3) decreased nuclear expression of PTB2 in neurons in cortical demyelinating lesions; and (4) nuclear depletion of TDP-43 in oligodendrocytes under metabolic stress induced by low glucose/low nutrient conditions compared with optimal culture conditions.ConclusionTDP-43 has been found to have a key role in oligodendrocyte function and viability, whereas PTB is important in neuronal differentiation, suggesting that altered expression and mislocalization of these RBPs in MS lesions may contribute to the pathogenesis of demyelination and neurodegeneration. Our findings also identify nucleocytoplasmic transport as a target for treatment.


2020 ◽  
Vol 295 (33) ◽  
pp. 11613-11625 ◽  
Author(s):  
Sarah E. Fritz ◽  
Soumya Ranganathan ◽  
Clara D. Wang ◽  
J. Robert Hogg

The sequence-specific RNA-binding proteins PTBP1 (polypyrimidine tract–binding protein 1) and HNRNP L (heterogeneous nuclear ribonucleoprotein L) protect mRNAs from nonsense-mediated decay (NMD) by preventing the UPF1 RNA helicase from associating with potential decay targets. Here, by analyzing in vitro helicase activity, dissociation of UPF1 from purified mRNPs, and transcriptome-wide UPF1 RNA binding, we present the mechanistic basis for inhibition of NMD by PTBP1. Unlike mechanisms of RNA stabilization that depend on direct competition for binding sites among protective RNA-binding proteins and decay factors, PTBP1 promotes displacement of UPF1 already bound to potential substrates. Our results show that PTBP1 directly exploits the tendency of UPF1 to release RNA upon ATP binding and hydrolysis. We further find that UPF1 sensitivity to PTBP1 is coordinated by a regulatory loop in domain 1B of UPF1. We propose that the UPF1 regulatory loop and protective proteins control kinetic proofreading of potential NMD substrates, presenting a new model for RNA helicase regulation and target selection in the NMD pathway.


1987 ◽  
Vol 7 (9) ◽  
pp. 3268-3276 ◽  
Author(s):  
A B Sachs ◽  
R W Davis ◽  
R D Kornberg

The poly(A)-binding protein (PAB) gene of Saccharomyces cerevisiae is essential for cell growth. A 66-amino acid polypeptide containing half of a repeated N-terminal domain can replace the entire protein in vivo. Neither an octapeptide sequence conserved among eucaryotic RNA-binding proteins nor the C-terminal domain of PAB is required for function in vivo. A single N-terminal domain is nearly identical to the entire protein in the number of high-affinity sites for poly(A) binding in vitro (one site with an association constant of approximately 2 X 10(7) M-1) and in the size of the binding site (12 A residues). Multiple N-terminal domains afford a mechanism of PAB transfer between poly(A) strands.


2020 ◽  
Vol 21 (13) ◽  
pp. 4571 ◽  
Author(s):  
Cole D. Libner ◽  
Hannah E. Salapa ◽  
Michael C. Levin

Neurodegeneration in multiple sclerosis (MS) is believed to underlie disease progression and permanent disability. Many mechanisms of neurodegeneration in MS have been proposed, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, and RNA-binding protein dysfunction. The purpose of this review is to highlight mechanisms of neurodegeneration in MS and its models, with a focus on RNA-binding protein dysfunction. Studying RNA-binding protein dysfunction addresses a gap in our understanding of the pathogenesis of MS, which will allow for novel therapies to be generated to attenuate neurodegeneration before irreversible central nervous system damage occurs.


2007 ◽  
Vol 27 (18) ◽  
pp. 6569-6579 ◽  
Author(s):  
Luciano H. Apponi ◽  
Seth M. Kelly ◽  
Michelle T. Harreman ◽  
Alexander N. Lehner ◽  
Anita H. Corbett ◽  
...  

ABSTRACT mRNA stability is modulated by elements in the mRNA transcript and their cognate RNA binding proteins. Poly(U) binding protein 1 (Pub1) is a cytoplasmic Saccharomyces cerevisiae mRNA binding protein that stabilizes transcripts containing AU-rich elements (AREs) or stabilizer elements (STEs). In a yeast two-hybrid screen, we identified nuclear poly(A) binding protein 2 (Nab2) as being a Pub1-interacting protein. Nab2 is an essential nucleocytoplasmic shuttling mRNA binding protein that regulates poly(A) tail length and mRNA export. The interaction between Pub1 and Nab2 was confirmed by copurification and in vitro binding assays. The interaction is mediated by the Nab2 zinc finger domain. Analysis of the functional link between these proteins reveals that Nab2, like Pub1, can modulate the stability of specific mRNA transcripts. The half-life of the RPS16B transcript, an ARE-like sequence-containing Pub1 target, is decreased in both nab2-1 and nab2-67 mutants. In contrast, GCN4, an STE-containing Pub1 target, is not affected. Similar results were obtained for other ARE- and STE-containing Pub1 target transcripts. Further analysis reveals that the ARE-like sequence is necessary for Nab2-mediated transcript stabilization. These results suggest that Nab2 functions together with Pub1 to modulate mRNA stability and strengthen a model where nuclear events are coupled to the control of mRNA turnover in the cytoplasm.


1997 ◽  
Vol 17 (11) ◽  
pp. 6402-6409 ◽  
Author(s):  
L Wu ◽  
P J Good ◽  
J D Richter

The translational activation of several maternal mRNAs in Xenopus laevis is dependent on cytoplasmic poly(A) elongation. Messages harboring the UUUUUAU-type cytoplasmic polyadenylation element (CPE) in their 3' untranslated regions (UTRs) undergo polyadenylation and translation during oocyte maturation. This CPE is bound by the protein CPEB, which is essential for polyadenylation. mRNAs that have the poly(U)12-27 embryonic-type CPE (eCPE) in their 3' UTRs undergo polyadenylation and translation during the early cleavage and blastula stages. A 36-kDa eCPE-binding protein in oocytes and embryos has been identified by UV cross-linking. We now report that this 36-kDa protein is ElrA, a member of the ELAV family of RNA-binding proteins. The proteins are identical in size, antibody directed against ElrA immunoprecipitates the 36-kDa protein, and the two proteins have the same RNA binding specificity in vitro. C12 and activin receptor mRNAs, both of which contain eCPEs, are detected in immunoprecipitated ElrA-mRNP complexes from eggs and embryos. In addition, this in vivo interaction requires the eCPE. Although a number of experiments failed to define a role for ElrA in cytoplasmic polyadenylation, the expression of a dominant negative ElrA protein in embryos results in an exogastrulation phenotype. The possible functions of ElrA in gastrulation are discussed.


Author(s):  
Stephanie K. Jones ◽  
Jennifer Rha ◽  
Sarah Kim ◽  
Kevin J. Morris ◽  
Omotola F. Omotade ◽  
...  

AbstractZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), an evolutionarily conserved member of a class of tandem zinc finger (CCCH) polyadenosine (polyA) RNA binding proteins, is associated with a form of heritable, nonsyndromic autosomal recessive intellectual disability. Previous studies of a loss of function mouse model, Zc3h14Δex13/Δex13, provide evidence that ZC3H14 is essential for proper brain function, specifically for working memory. To expand on these findings, we analyzed the dendrites and dendritic spines of hippocampal neurons from Zc3h14Δex13/Δex13 mice, both in situ and in vitro. These studies reveal that loss of ZC3H14 is associated with a decrease in total spine density in hippocampal neurons in vitro as well as in the dentate gyrus of 5-month old mice analyzed in situ. This reduction in spine density in vitro results from a decrease in the number of mushroom-shaped spines, which is rescued by exogenous expression of ZC3H14. We next performed biochemical analyses of synaptosomes prepared from whole wild-type and Zc3h14Δex13/Δex13 mouse brains to determine if there are changes in steady state levels of postsynaptic proteins upon loss of ZC3H14. We found that ZC3H14 is present within synaptosomes and that a crucial postsynaptic protein, CaMKIIα, is significantly increased in these synaptosomal fractions upon loss of ZC3H14. Together, these results demonstrate that ZC3H14 is necessary for proper dendritic spine density in cultured hippocampal neurons and in some regions of the mouse brain. These findings provide insight into how a ubiquitously expressed RNA binding protein leads to neuronal-specific defects that result in brain dysfunction.


2021 ◽  
Author(s):  
Sarah E Cabral ◽  
Kimberly Mowry

RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular and developmental polarity. While enrichment of RNAs and RNA-binding proteins (RBPs) is a hallmark of both processes, the functional and structural roles of RNA-RNA and RNA-protein interactions within condensates remain unclear. Recent work from our laboratory has shown that RNAs required for germ layer patterning in Xenopus oocytes localize in novel biomolecular condensates, termed Localization bodies (L-bodies). L-bodies are composed of a non-dynamic RNA phase enmeshed in a more dynamic protein-containing phase. However, the interactions that drive the biophysical characteristics of L-bodies are not known. Here, we test the role of RNA-protein interactions using an L-body RNA-binding protein, PTBP3, which contains four RNA-binding domains (RBDs). We find that binding of RNA to PTB is required for both RNA and PTBP3 to be enriched in L-bodies in vivo. Importantly, while RNA binding to a single RBD is sufficient to drive PTBP3 localization to L-bodies, interactions between multiple RRMs and RNA tunes the dynamics of PTBP3 within L-bodies. In vitro, recombinant PTBP3 phase separates into non-dynamic structures in an RNA-dependent manner, supporting a role for RNA-protein interactions as a driver of both recruitment of components to L-bodies and the dynamics of the components after enrichment. Our results point to a model where RNA serves as a concentration-dependent, non-dynamic substructure and multivalent interactions with RNA are a key driver of protein dynamics.


2001 ◽  
Vol 21 (10) ◽  
pp. 3364-3374 ◽  
Author(s):  
Sally A. Mitchell ◽  
Emma C. Brown ◽  
Mark J. Coldwell ◽  
Richard J. Jackson ◽  
Anne E. Willis

ABSTRACT It has been reported previously that the 5′ untranslated region of the mRNA encoding Apaf-1 (apoptotic protease-activating factor 1) has an internal ribosome entry site (IRES), whose activity varies widely among different cell types. Here it is shown that the Apaf-1 IRES is active in rabbit reticulocyte lysates, provided that the system is supplemented with polypyrimidine tract binding protein (PTB) and upstream of N-ras (unr), two cellular RNA binding proteins previously identified to be required for rhinovirus IRES activity. In UV cross-linking assays and electrophoretic mobility shift assays with individual recombinant proteins, the Apaf-1 IRES binds unr but not PTB; however, PTB binding occurs if unr is present. Over a range of different cell types there is a broad correlation between the activity of the Apaf-1 IRES and their content of PTB and unr. In cell lines deficient in these proteins, overexpression of PTB and unr stimulated Apaf-1 IRES function. This is the first example where an IRES in a cellular mRNA has been shown to be functionally dependent, both in vitro and in vivo, on specific cellular RNA binding proteins. Given the critical role of Apaf-1 in apoptosis, these results have important implications for the control of the apoptotic cascade.


1987 ◽  
Vol 7 (9) ◽  
pp. 3268-3276 ◽  
Author(s):  
A B Sachs ◽  
R W Davis ◽  
R D Kornberg

The poly(A)-binding protein (PAB) gene of Saccharomyces cerevisiae is essential for cell growth. A 66-amino acid polypeptide containing half of a repeated N-terminal domain can replace the entire protein in vivo. Neither an octapeptide sequence conserved among eucaryotic RNA-binding proteins nor the C-terminal domain of PAB is required for function in vivo. A single N-terminal domain is nearly identical to the entire protein in the number of high-affinity sites for poly(A) binding in vitro (one site with an association constant of approximately 2 X 10(7) M-1) and in the size of the binding site (12 A residues). Multiple N-terminal domains afford a mechanism of PAB transfer between poly(A) strands.


Sign in / Sign up

Export Citation Format

Share Document