scholarly journals Antagonistic center-surround mechanisms for direction selectivity in the retina

2019 ◽  
Author(s):  
Lea Ankri ◽  
Elishai Ezra-Tsur ◽  
Shir R. Maimon ◽  
Nathali Kaushansky ◽  
Michal Rivlin-Etzion

SummaryA key feature in sensory processing is center-surround receptive field antagonism. Retinal direction-selectivity (DS) relies on asymmetric inhibition from starburst amacrine cells (SAC) to direction selective ganglion cells (DSGC). SAC exhibit antagonistic center-surround, depolarizing to light increments and decrements in their center and surround, respectively, but the role of this property in DS remains elusive. We found that a repetitive stimulation exhausts SAC center and enhances its surround and used it to distinguish center-from surround-mediated responses. Center, but not surround stimulation, induced direction-selective responses in SAC, as predicted by an elementary spatiotemporal model. Nevertheless, both SAC center and surround elicited direction-selective responses in DSGCs, but to opposite directions. Physiological and morphology-based modeling data show that the opposed responses resulted from inverted DSGC’s excitatory-inhibitory temporal balance, indicating that SAC response time rules DS. Our findings reveal antagonistic center-surround mechanisms for DS, and demonstrate how context-dependent center-surround reorganization enables flexible computations.

2014 ◽  
Vol 112 (8) ◽  
pp. 1950-1962 ◽  
Author(s):  
Minggang Chen ◽  
Seunghoon Lee ◽  
Silvia J. H. Park ◽  
Loren L. Looger ◽  
Z. Jimmy Zhou

Retinal bipolar cells (BCs) transmit visual signals in parallel channels from the outer to the inner retina, where they provide glutamatergic inputs to specific networks of amacrine and ganglion cells. Intricate network computation at BC axon terminals has been proposed as a mechanism for complex network computation, such as direction selectivity, but direct knowledge of the receptive field property and the synaptic connectivity of the axon terminals of various BC types is required in order to understand the role of axonal computation by BCs. The present study tested the essential assumptions of the presynaptic model of direction selectivity at axon terminals of three functionally distinct BC types that ramify in the direction-selective strata of the mouse retina. Results from two-photon Ca2+ imaging, optogenetic stimulation, and dual patch-clamp recording demonstrated that 1) CB5 cells do not receive fast GABAergic synaptic feedback from starburst amacrine cells (SACs); 2) light-evoked and spontaneous Ca2+ responses are well coordinated among various local regions of CB5 axon terminals; 3) CB5 axon terminals are not directionally selective; 4) CB5 cells consist of two novel functional subtypes with distinct receptive field structures; 5) CB7 cells provide direct excitatory synaptic inputs to, but receive no direct GABAergic synaptic feedback from, SACs; and 6) CB7 axon terminals are not directionally selective, either. These findings help to simplify models of direction selectivity by ruling out complex computation at BC terminals. They also show that CB5 comprises two functional subclasses of BCs.


2018 ◽  
Vol 115 (51) ◽  
pp. E12083-E12090 ◽  
Author(s):  
Adam Bleckert ◽  
Chi Zhang ◽  
Maxwell H. Turner ◽  
David Koren ◽  
David M. Berson ◽  
...  

Synaptic inhibition controls a neuron’s output via functionally distinct inputs at two subcellular compartments, the cell body and the dendrites. It is unclear whether the assembly of these distinct inhibitory inputs can be regulated independently by neurotransmission. In the mammalian retina, γ-aminobutyric acid (GABA) release from starburst amacrine cells (SACs) onto the dendrites of on–off direction-selective ganglion cells (ooDSGCs) is essential for directionally selective responses. We found that ooDSGCs also receive GABAergic input on their somata from other amacrine cells (ACs), including ACs containing the vasoactive intestinal peptide (VIP). When net GABAergic transmission is reduced, somatic, but not dendritic, GABAA receptor clusters on the ooDSGC increased in number and size. Correlative fluorescence imaging and serial electron microscopy revealed that these enlarged somatic receptor clusters are localized to synapses. By contrast, selectively blocking vesicular GABA release from either SACs or VIP ACs did not alter dendritic or somatic receptor distributions on the ooDSGCs, showing that neither SAC nor VIP AC GABA release alone is required for the development of inhibitory synapses in ooDSGCs. Furthermore, a reduction in net GABAergic transmission, but not a selective reduction from SACs, increased excitatory drive onto ooDSGCs. This increased excitation may drive a homeostatic increase in ooDSGC somatic GABAA receptors. Differential regulation of GABAA receptors on the ooDSGC’s soma and dendrites could facilitate homeostatic control of the ooDSGC’s output while enabling the assembly of the GABAergic connectivity underlying direction selectivity to be indifferent to altered transmission.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Thomas A Ray ◽  
Suva Roy ◽  
Christopher Kozlowski ◽  
Jingjing Wang ◽  
Jon Cafaro ◽  
...  

A common strategy by which developing neurons locate their synaptic partners is through projections to circuit-specific neuropil sublayers. Once established, sublayers serve as a substrate for selective synapse formation, but how sublayers arise during neurodevelopment remains unknown. Here, we identify the earliest events that initiate formation of the direction-selective circuit in the inner plexiform layer of mouse retina. We demonstrate that radially migrating newborn starburst amacrine cells establish homotypic contacts on arrival at the inner retina. These contacts, mediated by the cell-surface protein MEGF10, trigger neuropil innervation resulting in generation of two sublayers comprising starburst-cell dendrites. This dendritic scaffold then recruits projections from circuit partners. Abolishing MEGF10-mediated contacts profoundly delays and ultimately disrupts sublayer formation, leading to broader direction tuning and weaker direction-selectivity in retinal ganglion cells. Our findings reveal a mechanism by which differentiating neurons transition from migratory to mature morphology, and highlight this mechanism’s importance in forming circuit-specific sublayers.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Laura Hanson ◽  
Santhosh Sethuramanujam ◽  
Geoff deRosenroll ◽  
Varsha Jain ◽  
Gautam B Awatramani

In the mammalian retina, direction-selectivity is thought to originate in the dendrites of GABAergic/cholinergic starburst amacrine cells, where it is first observed. However, here we demonstrate that direction selectivity in downstream ganglion cells remains remarkably unaffected when starburst dendrites are rendered non-directional, using a novel strategy combining a conditional GABAA α2 receptor knockout mouse with optogenetics. We show that temporal asymmetries between excitation/inhibition, arising from the differential connectivity patterns of starburst cholinergic and GABAergic synapses to ganglion cells, form the basis for a parallel mechanism generating direction selectivity. We further demonstrate that these distinct mechanisms work in a coordinated way to refine direction selectivity as the stimulus crosses the ganglion cell’s receptive field. Thus, precise spatiotemporal patterns of inhibition and excitation that determine directional responses in ganglion cells are shaped by two ‘core’ mechanisms, both arising from distinct specializations of the starburst network.


1995 ◽  
Vol 12 (1) ◽  
pp. 177-184 ◽  
Author(s):  
Ralph J. Jensen

AbstractStarburst amacrine cells in the rabbit retina were labeled following an intraocular injection of the fluorescent dye, 4, 6, diamidino-2-phenylindole (DAPI). From each eye a strip of retina was removed, mounted on a platform beneath an epifluorescence microscope, and superfused with a physiological solution. The tip of a tungsten microelectrode (for extracellular recording) was visually positioned near the cell body of a DAPI-labeled starburst amacrine cell that was located in the ganglion cell layer. Light-evoked responses from the displaced starburst amacrine cells were studied in normal retinas and in retinas that had received a small electrolytic lesion near the optic disk 5–9 months beforehand. In normal retinas, a small spot of light centered over the receptive field of a displaced starburst amacrine cell in nearly all cases evoked a brief burst of spikes only at light onset. When stimulated with a large spot or an annulus of light, many cells gave a small burst of spikes at light offset. In lesioned retinas, the light responses of displaced starburst amacrine cells were recorded in areas of the retina where ganglion cells had degenerated. All cells responded with a large burst of spikes at the onset and offset of a small, centered spot of light. Large spots and annuli of light also evoked robust ON/OFF responses from these cells. The results from this study show that the receptive-field properties of displaced starburst amacrine cells change following axotomy-induced degeneration of ganglion cells. This finding indicates that changes in either synaptic transmission or the membrane properties of neurons occur in the retina following degeneration of ganglion cells.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009754
Author(s):  
Elishai Ezra-Tsur ◽  
Oren Amsalem ◽  
Lea Ankri ◽  
Pritish Patil ◽  
Idan Segev ◽  
...  

Retinal direction-selectivity originates in starburst amacrine cells (SACs), which display a centrifugal preference, responding with greater depolarization to a stimulus expanding from soma to dendrites than to a collapsing stimulus. Various mechanisms were hypothesized to underlie SAC centrifugal preference, but dissociating them is experimentally challenging and the mechanisms remain debatable. To address this issue, we developed the Retinal Stimulation Modeling Environment (RSME), a multifaceted data-driven retinal model that encompasses detailed neuronal morphology and biophysical properties, retina-tailored connectivity scheme and visual input. Using a genetic algorithm, we demonstrated that spatiotemporally diverse excitatory inputs–sustained in the proximal and transient in the distal processes–are sufficient to generate experimentally validated centrifugal preference in a single SAC. Reversing these input kinetics did not produce any centrifugal-preferring SAC. We then explored the contribution of SAC-SAC inhibitory connections in establishing the centrifugal preference. SAC inhibitory network enhanced the centrifugal preference, but failed to generate it in its absence. Embedding a direction selective ganglion cell (DSGC) in a SAC network showed that the known SAC-DSGC asymmetric connectivity by itself produces direction selectivity. Still, this selectivity is sharpened in a centrifugal-preferring SAC network. Finally, we use RSME to demonstrate the contribution of SAC-SAC inhibitory connections in mediating direction selectivity and recapitulate recent experimental findings. Thus, using RSME, we obtained a mechanistic understanding of SACs’ centrifugal preference and its contribution to direction selectivity.


2019 ◽  
Vol 116 (8) ◽  
pp. 3262-3267 ◽  
Author(s):  
Yu-Tien Hsiao ◽  
Wen-Chi Shu ◽  
Pin-Chun Chen ◽  
Hui-Ju Yang ◽  
Hsin-Yo Chen ◽  
...  

Patterned spontaneous activity periodically displays in developing retinas termed retinal waves, essential for visual circuit refinement. In neonatal rodents, retinal waves initiate in starburst amacrine cells (SACs), propagating across retinal ganglion cells (RGCs), further through visual centers. Although these waves are shown temporally synchronized with transiently high PKA activity, the downstream PKA target important for regulating the transmission from SACs remains unidentified. A t-SNARE, synaptosome-associated protein of 25 kDa (SNAP-25/SN25), serves as a PKA substrate, implying a potential role of SN25 in regulating retinal development. Here, we examined whether SN25 in SACs could regulate wave properties and retinogeniculate projection during development. In developing SACs, overexpression of wild-type SN25b, but not the PKA-phosphodeficient mutant (SN25b-T138A), decreased the frequency and spatial correlation of wave-associated calcium transients. Overexpressing SN25b, but not SN25b-T138A, in SACs dampened spontaneous, wave-associated, postsynaptic currents in RGCs and decreased the SAC release upon augmenting the cAMP-PKA signaling. These results suggest that SN25b overexpression may inhibit the strength of transmission from SACs via PKA-mediated phosphorylation at T138. Moreover, knockdown of endogenous SN25b increased the frequency of wave-associated calcium transients, supporting the role of SN25 in restraining wave periodicity. Finally, the eye-specific segregation of retinogeniculate projection was impaired by in vivo overexpression of SN25b, but not SN25b-T138A, in SACs. These results suggest that SN25 in developing SACs dampens the spatiotemporal properties of retinal waves and limits visual circuit refinement by phosphorylation at T138. Therefore, SN25 in SACs plays a profound role in regulating visual circuit refinement.


2012 ◽  
Vol 29 (1) ◽  
pp. 73-81 ◽  
Author(s):  
W.R. TAYLOR ◽  
R.G. SMITH

AbstractStarburst amacrine cells (SBACs) within the adult mammalian retina provide the critical inhibition that underlies the receptive field properties of direction-selective ganglion cells (DSGCs). The SBACs generate direction-selective output of GABA that differentially inhibits the DSGCs. We review the biophysical mechanisms that produce directional GABA release from SBACs and test a network model that predicts the effects of reciprocal inhibition between adjacent SBACs. The results of the model simulations suggest that reciprocal inhibitory connections between closely spaced SBACs should be spatially selective, while connections between more widely spaced cells could be indiscriminate. SBACs were initially identified as cholinergic neurons and were subsequently shown to contain release both acetylcholine and GABA. While the role of the GABAergic transmission is well established, the role of the cholinergic transmission remains unclear.


2019 ◽  
Author(s):  
Varsha Jain ◽  
Benjamin L. Murphy-Baum ◽  
Geoff deRosenroll ◽  
Santhosh Sethuramanujam ◽  
Mike Delsey ◽  
...  

SUMMARYRecent studies indicate that the precise timing and location of excitation and inhibition (E/I) within active dendritic trees can significantly impact neuronal function. How excitatory and inhibitory inputs are functionally organized at the subcellular level in intact circuits remains unclear. To address this issue, we took advantage of the retinal direction-selective ganglion cell circuit, in which directionally tuned inhibitory GABAergic input arising from starburst amacrine cells shape direction-selective dendritic responses. We combined two-photon Ca2+ imaging with genetic, pharmacological, and single-cell ablation methods to examine local E/I. We demonstrate that when active dendritic conductances are blocked, direction selectivity emerges semi-independently within unusually small dendritic segments (<10 µm). Impressively, the direction encoded by each segment is relatively homogenous throughout the ganglion cell’s dendritic tree. Together the results demonstrate a precise subcellular functional organization of excitatory and inhibitory input, which suggests that the parallel processing scheme proposed for direction encoding could be more fine-grained than previously envisioned.


Sign in / Sign up

Export Citation Format

Share Document